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ABSTRACT
This article explores the extent to which machine learning can be
used to detect administrative errors. It concentrates on adminis-
trative errors in unemployment insurance (UI) decisions, which
give rise to a public values conflict between efficiency and effec-
tiveness. This conflict is first described and then highlighted in
the history of the US UI regime. Machine learning may not only
mitigate this conflict but it may also help to combat fraud and re-
duce the backlog of claims associated with economic crises such
as the COVID-19 pandemic. The article uses data about improper
UI payments throughout the US from 2002 through 2018 to ana-
lyze the accuracy of random forests and deep learning models. We
find that a random forest model using gradient descent boosting is
more accurate, along several measures, than every deep learning
model tested. This finding could be explained by the goodness-of-
fit between the machine learning method and the available data.
Alternatively, deep learning performance could be attenuated by
necessary limits to publicly-accessible claims data.

CCS CONCEPTS
• Applied computing → Computing in government; IT gov-
ernance; • Computing methodologies → Supervised learning;
Classification and regression trees.
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1 INTRODUCTION
Nobody is perfect; mistakes happen. This paper analyzes whether
Artificial Intelligence (AI) can be used to detect mistakes. It fo-
cuses on mistakes that State workforce agencies make when they
review and process Unemployment Insurance (UI) claims. In de-
ciding claims, mistakes consist of over- or under-paying claimants.
Where a claim is denied that should be approved, the mistake is an
underpayment of the full dollar amount claimed. Such mistakes are
administrative errors, that is, mistakes in organizational decision-
making about the allocation of benefits. These administrative errors
are documented in data collected by the US Department of Labor
(DOL). This paper uses these data to train different Machine Learn-
ing (ML) algorithms to predict administrative errors in this setting.

Systemic administrative errors in programs like UI have long
been recognized as important [29]. These errors have already been
identified as a problem that could be solved - or exacerbated - with
technology [8, 13, 19]. Moreover, general theoretical frameworks to
guide the implementation AI exist [48]. Some ML classifiers have
been used in other studies to detect fraud in Medicare payments
[4, 9, 22, 34]. Yet, which concrete AI-technologies can and should
be used to address administrative errors has not been answered in
full.

This paper is motivated by the question of whether AI can and
should be used to detect administrative errors. It takes the first
steps towards answering this research question and improving
AI-driven decision-making in government by examining promi-
nent ML-technologies for a specific task. AI plays an increasingly
prominent role in the operation of the public sector. AI is used in
criminal justice, public health, child-welfare, education, policing,
and regulatory enforcement [9, 18]. In each case, AI has the poten-
tial to further a public value: efficiency. But greater efficiency, such
as reducing costs, may come at the expense of at least one other
important public value: effectiveness, that is, making sure that those
who are eligible for services receive them. Administrative errors
hence have a public values conflict at their center. We argue that
reducing administrative errors helps to overcome this conflict. Both
public values can be furthered at the same time.

1The authors wish to thank Natalie Gallagher for her research assistance
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This is particularly important today. UI fraud has long been a
topic of attention and concern. In the US 296,749 cases of fraud were
identified in 2019, amounting to $366.8 million [41]. The number
of fraudulent claims has increased significantly during the COVID-
19 pandemic [40]. At the same time, the pandemic has brought
attention to non–fraudulent over- and underpayments of UI benefits
and to insufficient timeliness with which UI claims are decided [17].

This paper contributes to the literature on administrative errors
and improper payments. It deploys AI-based techniques for iden-
tifying improper payments. It does so by using labeled audit data
that are likely to be employed in training such systems in practice.
The paper also compares the performance of different algorithms
and discusses their goodness of fit relative to these data. It begins
by sketching a public values conflict of UI (Section 2), describes its
historical background in the US and the origin of the data (Sections
3 and 4), and then reports results and discusses studies of different
families of ML-algorithms for predicting administrative errors in
benefit claims (Sections 5 and 6).

Briefly stated, we find that a random forest classifier using gra-
dient descent boosting (CatBoost) is superior to several different
deep learning-based classifiers both for accuracy and explainability.
These advantages are to some degree due to the underlying data gen-
erative processes, as well as specific features of publicly-accessible
US unemployment insurance data.

2 A PUBLIC VALUES CONFLICT
Two public values that UI aims to further are efficiency and effi-
cacy.2 These values themselves should not be controversial [27, 38].
They motivated the creation of the UI system, inform its legal back-
ground, shape how UI is administered, and are reflected in public
expectations towards UI. The two values can be defined and ana-
lyzed into constituting dimensions as follows.

(1) Effectiveness: provide insurance payments to those who
are eligible in a convenient and timely manner.

(a) Opportunity: enable individuals who are likely eligible
to apply, e.g. offer an application process that is convenient
for eligible claimants.

(b) Payment: render goods/services for eligible claims to
claimants quickly.

(c) Avoid underpayment: minimize under-payment, i.e. re-
duce false negative eligibility.

(2) Efficiency: reducing unnecessary monetary cost.
(a) Cost: minimize cost of administering insurance claims to

eligible claimants.
(b) Avoid overpayment:minimize sumof overpayment amounts,

i.e. reduce false positive eligibility.

Efficiency reflects a fiduciary obligation to avoid unnecessary
costs. Effectiveness formulates one central aim of UI, namely, to
provide insurance payments. Effectiveness is relevant already at
the point at which individuals decide whether or not to claim UI.
Call this decision the first stage. In the second stage, when work-
force agencies make determination decisions about claim eligibility,

2We concentrate on these two because they are immediately relevant to classification
errors. Avoiding under- and over-payment is avoiding false negatives and positives
respectively.

effectiveness demands that underpayments are avoided and that
payments are made quickly.

Efficiency and effectiveness can conflict. For example, efficiency
demands to avoid overpayment, whereas effectiveness demands to
avoid underpayment. An increase in one value leads to a decrease in
the other. On the assumption that eligibility is hard to measure — so
that when we predict eligibility the distributions of claims that are
in fact eligible and those that are not overlap (see Fig. 1) — avoiding
underpayment comes at the expense of increased overpayment.
Workforce agencies therefore need a decision-making policy that
determines the cutoff point. All claims with an eligibility score
below this point are rejected and all claims with an eligibility score
higher than this point are accepted (see Fig. 1).

This conflict between efficiency and effectiveness arises even
when no explicit eligibility scores are used. Classical statistical hy-
pothesis testing teaches that efforts to reduce the odds of doing
the wrong thing (a Type I error) generally increase the odds of not
doing the right thing (a Type II error). It is therefore reasonable
to assume that efforts to prevent improper overpayments corre-
spondingly make it more likely that improper underpayments will
occur.

This conflict can play out along multiple causal pathways. For
example, fraud might be reduced by requiring claimants to prove
having qualified dependents in triplicate instead of a single source.
This requirement may cause some recipients to become ineligible
even though they are, in fact, eligible. Underpayment errors would
result on the margin for the appropriate dependent allowance, or in
full if the recipient’s claim is placed on administrative hold pending
determination or if a claimant elects to not to complete their appli-
cation or appeal in light of the additional documentation required.

It should be noted that different errors are associated with vastly
different practical results. Failing to detect an underpayment is
different from failing to detect an overpayment, both from ethical
and economic perspectives. From the claimants perspective, failing
to detect an underpayment is usually worse than failing to detect an
overpayment. The practical consequences of not receiving claims
because an agency mistakenly determined them to be ineligible are
severe [17, 19].

Efficiency and effectiveness also conflict in their respective di-
mensions of cost (efficiency) and opportunity (effectiveness). This
is because making the claim process easy and convenient is ex-
pensive. For example, computer voice assistants or chat bots are
cheaper than a human customer service representative but chat
bots are currently unlikely to answer concerns that claimants have
satisfactorily. The question of whether to replace an expensive but
effective call center with more efficient software poses another
trade-off between effectiveness and efficiency.

This conflict between conflict between efficiency and effective-
ness is relevant for two reasons. First, the conflict can inform an
analysis of the legal and policy history. We argue in the next sec-
tion that social insurance programs in the US tended to focus on
efficiency. Second, the conflict motivates our investigation into the
use of AI to identify administrative errors, which we undertake
in the subsequent sections. Avoiding under- and over-payment
is immediately relevant to automatic classification (because these
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Eligible

Ineligible

1                                             Eligibility Score                                          10

reject <   > accept reject <   > accept

Policy1
high overpayment, 
low underpayment

Policy2
no overpayment, 

very high underpayment

Figure 1: The conflict between avoiding over- and under-payments is resolved differently by different decision policies.

two values related to avoiding false negatives and positives re-
spectively). AI could be a way of partially overcoming the conflict
between efficiency and effectiveness.

Finally, one further public value will be relevant for our discus-
sion: explainability. Explainability, for the purposes here, means
that a workforce agency can provide reasons for each decision that
they reached. When AI is used for decision-making, this requires
that this use of AI is both scrutable (in some sense) as well as intu-
itive. ML models often fail on both counts [44]. Explainability is an
important value for intrinsic as well as for instrumental reasons.
Intrinsically, the idea that a government agency can explain its
decisions, even when they are made by AI, is rooted in democratic
theory [5]. Instrumentally, explainability, firstly, could help prevent
future mistakes — assuming that explainability allows that causes
of administrative errors are recognized, understood, and rectified
faster[49]. Secondly, explainability is instrumentally valuable in-
sofar as it allows to document reasons for which decisions were
reached. In this way, explainability instrumentally promotes the
public value of procedural due process or rule of law [27, 38].

3 BACKGROUND
US social insurance programs have been the subject of policy and
administration studies since their inception in the 1930s and exten-
sion in the 1960s. In 1947, Simon noted that, with the exception of
military logistics, most of what was then known about the science
of administration in public organizations was owed to research on
programs such as the Aid to Families with Dependent Children
(AFDC, now Temporary Assistance to Needy Families, or TANF),

Social Security, or Food Stamps (now Supplemental Nutrition As-
sistance Program, or SNAP) [45].

US social insurance programs are interesting for several reasons.
Their size and scope set them apart from other administrative di-
visions of government. Their public-facing nature gave rise to a
new type of street-level bureaucrat [32], as well as a new source of
administrative burden [10]. Social insurance programs are more-
over highly political, both because they are large and because they
redistribute money across individuals and over time.

The political nature of these programs and policies is reflected
in their administrative complexity. With few exceptions, US social
insurance programs are targeted towards specific sub-populations
that are socially constructed as deserving of material aid [43]. Ad-
ditional complexity arises from other policy design choices. These
include delegating implementation to state or county governments;
limitations on the benefit eligibility by length of time; restrictions
on goods or services purchased using benefits; and limits to other
sources of income while receiving benefits. Complexity is increased
further still by the fact that these policies are mutable, and have
been altered by legislation multiple times over the years.

From an administrative perspective, these design choices have
the net effect that determining whether a claimant is eligible for
benefits, and if so at what level, often requires information from
multiple parties — claimants, other government bureaus or agen-
cies, and employers. All this complexity gives rise to the risk that
decisions are made in error. When such errors occur frequently
enough in programs that are as large as welfare, Medicare, or UI,
the result is a significant misallocation of public money.
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3.1 Institutional History: Focus on
Overpayments

Throughout its history, legislation on social insurance concentrated
predominantly on avoiding overpayments. The US Federal gov-
ernment recognized the increasing financial and political toll of
administrative errors in social insurance programs in the 1970s.
This led to a “war on fraud and error.” Quality control (QC) audit
processes were adapted from manufacturing operations and intro-
duced to social policy [7, 36]. Broadly speaking, in QC both federal
and state agencies audit samples of programmatic claims data. Fed-
eral agencies would then use these audits as input for determining
fault tolerance thresholds, which then served as a benchmark for
individual state agencies [31]. Over time, the emphasis of QC mor-
phed from identifying error sources and establishing corrective
measures to a performance management regime under the Finan-
cial Integrity Act of 1982 (FIA). In addition to additional reporting
requirements, the FIA introduced sanctions, in the form of with-
holding of federal funding, for States that failed to keep their error
rates below the established tolerance level [47]. This change re-
flected both the politicization of QC as an instrument of control,
and the broader trend in emphasizing efficiency over effectiveness
in public policy and administration [7, 29, 33].

Attention to identifying the source of administrative errors in
social insurance programs, as well as strategies for reducing them,
was reintroduced in the two-page Improper Payments Informa-
tion Act of 2002. In addition to formally defining these errors as
“improper payments,” the law requires agency heads to provide
information on the causes of any identified improper payments,
strategies enacted or planned to reduce those errors, and whether
the agency believes it possesses the infrastructure necessary to
enact the reductions. These changes were further supplemented
by the Improper Payments Elimination and Recovery Act of 2010
and the Improper Payments Elimination and Recovery Improve-
ment Act of 2012, which established procedures for recovering
overpayments and required program administrators to verify that
their benefit distribution systems included a pre-verification check
as an additional safeguard for preventing payments to ineligible
recipients.

These 21st century changes to federal performance management
of social insurance administration occurred at the same time as
new technological approaches for auditing large, complex data
for patterns of behavior became viable for commercial and public
use. Advances in ML, in conjunction with exponential increases in
digital data generation, storage, and computation capacity, made it
possible to analyze large-n high-dimensional data in real time and
mine it for patterns that would otherwise be imperceptible to human
auditors. In the private sector, ML has beenwidely adopted in efforts
to identify financial fraud, both ex post and ex ante [1, 12]. In the
public sector, ML approaches are increasingly used for detecting
medical insurance fraud and improper payments [4, 20–22, 34].
However, we are unable to find any publicly available research on
the use of ML to identify underpayment of entitled funds when
auditing payment systems.

3.2 Empirical Context: Unemployment
Insurance

Unemployment Insurance was established as part of the Social Secu-
rity Act of 1935. It is principally funded through a tax on employers.
State governments are responsible for financing benefits, and imple-
mentation. The federal government provides oversight and covers
the program’s administration costs. In addition to federal eligibility
standards, states are empowered to design their own requirements
with respect to eligibility, benefit amounts, length of benefit spells,
and disqualification conditions and penalties. Over time these state-
level variations in UI policy have become sufficiently complex that
the DOL publishes an annual report, The Comparison of State Un-
employment Insurance Laws, to document these differences.

Although the definition of “improper payments” in the 2002
Improper Payments Act included underpayments to eligible recipi-
ents, the substantive and normative focus of federal performance
management of social insurance programs is decidedly oriented
towards minimizing overpayments. Overpayments can be classified
into two general forms. One form of overpayment occurs when the
recipient knowingly and willfully misleads the state with respect
to their eligibility information — this is fraud. Reducing administra-
tive errors that result in fraudulent payments is an understandably
salient goal for both political and administrative managers. But
overpayment errors can also arise due to unintentional errors in
eligibility determination, either by the claimant or the adminis-
trative agency and its staff. Correcting these errors is likely to be
particularly appealing to administrative managers and staff, as they
are more likely to be held largely or solely responsible for them.
But the third form of improper payment — the underpayment of
benefits to eligible recipients — receives considerably less attention
by legislators, administrators, and researchers (though see [37] for
an example of early recognition of this imbalance in attention).

4 METHODS
In what follows, we describe the data and the machine learning
methods used for this project.

4.1 Data
Primary data are drawn from the Department of Labor’s Benefits
Accuracy Measurement system [16]. This dataset reports results
from randomly sampled investigations into UI claims. It provides
federally-collected information of improper UI payments, one form
of administrative error. The final, analysis-ready dataset contains
785,159 observations, where each observation contains information
about one unemployment benefits claim made during the years
2002–2018. Each observation is characterized by 228 features (vari-
ables), which contain personal information of the claimant (date
of birth, gender, race, etc), information about last employment of
the claimant (occupation code, salary, etc), information about inter-
action between claimant and agency (how claim was filled, was it
filled on time or not, etc.), as well as other information.

4.2 Analytic Strategy
Predicting administrative errors is a classification problem. Classi-
fication is one of the fundamental tasks in machine learning, and
has the goal of predicting the category of a data point. A simple
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example of a classification problem is spam detection. An email falls
into one of two categories: either it is spam or it is not. Each new
email is a data point from which an algorithm predicts whether
or not this email is spam. In this paper, we train classifiers using
supervised learning. That is, we have a set of labeled instances in
which both the data point and the classification is given. The labels
describe the category of a particular data point. On these labelled
instances a model is trained that then is used to predict the labels
of unlabeled instances [2]. In the following, we describe some of
the main ML-approaches that we examine in this paper. Although
we will report results from testing seven methods (including four
deep learning approaches) in total, for limitations of space, we only
describe two in detail.

4.2.1 Overview of Machine Learning Classification. Formally, one
begins with a training set T consisting of n data points t1, . . . , tn .
Each data point ti is associated with a feature vector
Fi = (fi,1, . . . , fi,m ) describing its properties. These features (or
variables) may be numerical or categorical. In the email example,
relevant features may include the length of the email in words,
the time the email was sent, whether the recipient has previously
responded to emails from the sender, etc. A categorical feature
may be ordinal (i.e., an ordering among the categories exists, like
whether the email was sent “High Priority”, “Normal”, or “Low
Priority”) or nominal (i.e., no such ordering exists, like whether
the sender’s email address is from “Gmail.com”, “Yahoo.com”, etc.).
Most classification algorithms require that features be numerical,
and so categorical features must be converted to numerical before
such data can be used [2].

Additionally, each data point in the training set is associated
with a label representing its category (or class). This category is
the value that the algorithm will learn to predict, such as “spam”
vs. “not spam”. These categories are assumed to be known; they
may, for example, have been identified by a human individually
examining each email.

Next, using the training set, a ML algorithm attempts to train a
model, i.e. learn the patterns distinguishing the various categories
from one another. The algorithm may learn, for instance, that spam
emails tend to come from senders with email addresses from certain
domains, and are sent at odd hours of the day. Non-spam emails, on
the other hand, come from senders who the recipient has previously
replied to, or come from domains matching the domain of the
recipient, and so on. Finally, once a model has been trained, it can
be applied to unlabeled data in order to perform automatic category
prediction.

A model trained to perform classification can reveal other useful
information in addition to making predictions on unlabeled data.
For example, one can identify which features are most useful for
distinguishing between classes (e.g., one might observe that the
most useful features for distinguishing spam from non-spam emails
are whether the recipient has ever responded to the sender, whether
the domain of the sender matches that of the recipient, and the
length of the email) [28]. With longitudinal data, one can then ex-
plore how classification patterns change over time (for example,
perhaps as spammers become more sophisticated, their emails be-
come longer). One can also cluster the data based on feature values,
thus identifying the dominant patterns in the dataset [23].

Machine Learning includes many different techniques to train
models; more are being developed in on-going research. One very
simple algorithm is known as k-Nearest Neighbors (k-NN) [24].
In this algorithm, for each unlabeled data point d , the algorithm
identifies the k closest data points from the training set (i.e., those
with known labels), and assigns d the category label belonging to
a majority or plurality of those known labels. The Naive Bayes
approach treats each feature as independent of the others, and then
for each feature, through application of Bayes’ Theorem, computes
the probability that the data point belongs to a particular category
given its feature value [30]. Bymultiplying these probabilities across
features, one can derive the probability that the data point belongs
to each class. Other popular methods include the Support Vector
Machine, which represents the data points in the feature space and
then identifies a boundary that best separates the classes from one
another [6]. By properly mapping the data points to the feature
space, this boundary can be efficiently found.

A final important category of algorithms is neural networks and
deep learning. Neural networks are a class of algorithms inspired
by how brains operate. In these algorithms, mathematical functions
called neurons are wired together into networks [35]. The analogy
to brains consists in the fact that the neurons in these networks
transmit signals to other neurons. The output of each neuron is a
combination of the signals sent to it as input, and weights indicating
the strength of each signal are adjusted as the algorithm proceeds.
These linked neurons can be organized into layers, where each layer
of neurons receives inputs from the previous layer and forwards its
output to the next layer. When a network consists of many layers,
we speak of deep learning. Each of the layers learns higher and
higher-level features from the input data. As layers progress, the
input is transformed into high-level features. Most current deep
learning methods are based on neural networks.

In the next two sections, we discuss two of the ML algorithms
that we use in this paper in depth (due to space, we cannot give
a comprehensive description of all methods). Specifically, we de-
scribe CatBoost, a recent decision-tree method; and after that, we
describe TabNet, a deep learning method designed for tabular data.

4.2.2 CatBoost: Decision Tree-Based Classification. CatBoost, short
for “Category Boosting”, belongs to a class of algorithms that make
predictions using what is known as decision trees [42]. A decision
tree is a flowchart-type object in which feature values are used to
determine which branch in the flowchart to take, until a prediction
is arrived at [26]. The simplest decision tree algorithm constructs
such a flowchart by identifying which single feature (and value) is
most predictive of category, and builds a branch corresponding to
that feature value.

CatBoost uses a variant of this approach. It has been observed
that sets of slightly different models collectively make better deci-
sions than single models. A subclass of decision tree algorithms use
this observation, but instead of constructing these models indepen-
dently, builds them sequentially so that each model can improve
upon the last. This is called additive training or gradient boost. Intu-
itively, the idea is that learning is improved because each new tree
can correct errors from past trees. Members of this class include
XGBoost (eXtreme Gradient Boosting) [14] and GBM (Gradient
Boosting Machine) [39]. Finally, also the CatBoost algorithm used
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in this paper [42] uses this method. These algorithms generally
show similar behavior on data. We selected CatBoost primarily be-
cause it offers a significant speedup advantage when implemented
on a GPU (a graphics processing unit, which allows for high levels
of parallelism).

Originally, CatBoost was designed to address a flaw in previous
gradient boosting algorithms known as prediction shift. Essentially,
prediction shift is a special type of target leakage, which occurs
when training data contains information about the target variable
(category label) that would not be available to the algorithm for
an unlabeled data point. This occurs because by training trees it-
eratively, the gradients themselves reveal information about the
target variables. To address this, CatBoost uses a weighted sam-
pling method known as ordered boosting, and samples new training
datasets independently.3 We use the “MultiClass” optimization in
the standard CatBoost implementation, which uses a Multiclass
Cross-Entropy Loss (log-loss) function given by:

MCE =

∑N
i=1wi loд

(
eaiti∑M−1
j=0 eai j

)
∑N
i=1wi

where ai j represents the predicted probability that element i be-
longs to class j and thewi values represent weights associated with
each element.4

4.2.3 TabNet: Deep Learning for Tabular Data. TabNet is a deep
learningmethod, designed by Google, for tabular data [3]. Generally
speaking, deep learning methods excel on unstructured data, such
as images, but perform badly on structured data, such as tables.
One reason for this is that data types in tabular data are often
heterogeneous (i.e. they represent fundamentally different things),
and the data are often sparse or non-continuous in the feature
space. TabNet was developed as a deep learning method to perform
better given such data. Because the data available for this project
consist of such tabular data, we chose to assess how TabNet models
performs in predicting administrative errors.

TabNet inputs raw tabular data, and then uses feature selection
to identify the features important for any particular data instance.
Through non-linear processing of the selected features, TabNet
aims to ultimately provide a ‘decision tree-like mapping’ to obtain
interpretable results. Experiments by its authors show that TabNet
can far outperform other deep learning methods — although as we
will see, in our experiments, it does not perform particularly well.

4.3 Experimental Setup
First, to prepare the data for use by a ML algorithm, we performed
several preprocessing steps:

(1) Features that could act as direct proxies for the target vari-
ables were removed. Examples include features like “to-
taloverpayment” or “underpayment” (which contain informa-
tion about total overpayment/underpayment in the dollars),
or features which contain corrected information obtained
after investigation (as this information was unavailable at
the time of the original claim audit);

3There are some other differences between CatBoost and previous methods, but this
is the main one.
4See https://catboost.ai/docs/concepts/loss-functions-multiclassification.html

(2) All non-numerical features were converted to categorical
features;

(3) For the Logistic Regression and Random Forest algorithms,
most of the features were converted to categorical. Some
features (such as date of birth) were removed, as categorical
representation of this data is very sparse and leads to a very
high dimensionality of the processed data.

We then tested the following algorithms:
(1) Logistic regression (LR) is one of the most basic algorithms

for the classification problems. In the case of multiclass clas-
sification, LR is trained for each class separately (i.e., the
one-vs-all scheme).

(2) Random forest (RF) uses an ensemble of the decision trees
trained on different random subsets of the data. RF is very
commonly used for tabular data.

(3) CatBoost classifier is another, more powerful way of com-
bining decision trees in the one model.

(4) The following deep learning/neural network algorithms:
(a) TabNet is designed for dealing specifically with tabular

data. TabNet uses sequential attention and has been shown
to perform well on tabular data [3].

(b) DeepFM combines factorization machines for recommen-
dation with neural networks for learning features, and
does not require feature engineering. It is not intended
specifically for use on tabular data, but can be used in that
setting [25].

(c) WideDeep is based on Google’s Wide & Deep algorithm,
which combines ‘wide’ linear models with ‘deep’ neural
networks. This algorithm has been used commercially on
Google Play [15].

(d) DCN stands for Deep & Cross Network, a type of neural
network with feature crossing at each layer, which doesn’t
require manual feature engineering. It works well for the
tabular data. [46]

To split the data into training and test sets, we use the following
approaches. In the first scenario, we sample 30% of the dataset
uniformly at random (this was because the dataset was too large
to handle in its entirety). This sampled data was further split into
an 80% training set and a 20% testing set, corresponding to the 16%
and 4% of the original data set. The model is trained using data
from the training set, and evaluated on the test set.

In the second scenario, dataset predictions were made only for
specific year of claims, and models were trained on the data from
the previous year or three previous years. This approach is a more
realistic representation of actual applications.

4.4 Evaluation Metrics
As mentioned above, we use a dataset from the Department of
Labor’s Benefits Accuracy Measurement system [16]. Each obser-
vation in this dataset is a claim that was randomly selected to
be investigated for improper payments. Each observation in the
dataset, or each claim, belongs to one of the following classes: “No
error”, “Overpayment”, “Underpayment”, or “Wrong issue.” “No
error” means that these claims were processed correctly and suc-
cessfully. “Overpayment” and “Underpayment” mean that benefit
payments were made that were too high or too low respectively.
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Table 1: Count and proportion of improper payment errors
by type

Type Count Proportion

No Error 629,445 0.807
Overpayment 74,983 0.096
Underpayment 59,080 0.076
Wrong Issue 16,090 0.021

Total 779,598 1

“Wrong issue” means that an error was made in the claim in a way
that was unrelated to the level of payment. Some of the samples ad-
ditionally belong to the “Fraud” class, which indicates that a claim
is an unlawful attempt to obtain unemployment benefits. We report
the fraud class of claims only in our descriptive statistics. Because
fraud is a subset of overpayment, all claims labeled as “Fraud” are
treated as “Overpayment” errors in our analysis.

As shown in Table 1, these classes are highly imbalanced in the
dataset. Since administrative errors are an exception, the majority
of samples belong to the class “No Error”. This makes evaluation
of the model somewhat complicated. If only the accuracy of the
model is considered, defined as the percentage of correctly classified
samples, then a trivial “model” which simply classifies all samples
to as belonging to the “No Error” class would achieve a very good
accuracy of approximately 80% — without doing any meaningful
prediction at all.

To analyze models meaningfully, given that the classes are highly
imbalanced, we use several different evaluation metrics. In partic-
ular, we use the metrics known as precision, recall, and F-score.
Precision is defined as the proportion of all positive predictions of
the class that are true positives of this class. Recall, or probability
of detection, is defined as the proportion of all true positives of the
class which were positively identified. F-score is then defined as
the harmonic mean between precision and recall. Intuitively, that
means that F-score will be low if precision or recall are low. For the
case when precision and recall are both equal to 1 — meaning that
the classifier was perfectly accurate — the F-score also is equal to
1. For the multi-class setting, the F-score can be computed in the
following two ways:

(1) Recall and precision can be computed over all samples, from
all classes. The F-score based on these values is called the
micro F-score.

(2) Recall and precision can be computed separately for each
class. In this case, the averaged F-score over all classes called
the macro F-score.

5 RESULTS
We begin with a summary of key descriptive statistics and trends
over time. In a second step, we report results of the classification
analysis of different ML approaches.

5.1 Descriptive Statistics
In our data, overpayment errors caused by fraud totaled over $25
million, while the total cost of non-fraudulent overpayments was

Figure 2: Improper payment error trends over time by type
of error

approximately $56 million. The vast majority (87%) of overpayment
claims were non-fraudulent. The total amount of underpaid money
in our data (i.e., associated with “Underpayment”) is approximately
$5 million.

The various types of errors have different distributions over
time. As can be seen in Figure 2, the overpayment error rate was
increasing up until approximately 2016, and then started to decrease.
The underpayment error rate has also been slowly decreasing over
time. In contrast, the fraud rate has remained roughly constant.

The error types also vary by State, as seen in Figure 3, which
aggregate results for all years. These differences may be explainable
by differences in State policies. For example, Ohio has a high rate
of underpayment errors (one of the highest in the country), but a
comparatively low rate of fraud.

5.2 Classification Analysis
Our goal is to assess whether ML can be used to predict the error-
type (if any) of a claim, using the features of that claim, and to use
the output from machine learning models to further analyze the
data. In these experiments, the class of the claim (e.g., underpay-
ment) was treated as the target variable.

For the first experimental setup (a randomized split of the data,
described in more detail in Section 4), results are shown in Table 2.
CatBoost demonstrated the best performance. Random Forest per-
formed worse, but not substantially, and Logistic Regression was
unable to generalize properly over the data and performed poorly.
Tuned Gradient Boosting-based methods, like CatBoost, often out-
perform RF [11] but in cases of noisy data, as here, performance
differences may be small.

For the second experimental setup, the model was trained only
on data from the previous one or three years to predict errors in
the next year. Results are shown in Figure 4. Because CatBoost per-
formed the best, we present only its results. (Surprisingly, TabNet,
although it was designed to perform very well on tabular data, did
relatively poorly.) Interestingly, CatBoost’s performance improves
over time. This could indicate gradual improvement of the adminis-
trative procedures, and investigating the causes of this behavior is
an avenue for future research.

As part of its output, CatBoost is able to provide a ranking of the
features based on how important they were to the classification.
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(a) Percentage of claims with an underpayment error. (b) Percentage of claims with an overpayment error.

(c) Percentage of successful claims. (d) Percentage of fraudulent claims.

Figure 3: Relative rate of improper payment errors by type of error across states

Table 2: F-Scores (micro and macro), Precision, and Recall Values by Classifier Type by Class using data from all time periods

Precision Precision Precision Precision Recall Recall Recall Recall
F-score F-score “no “over- “under- “wrong “no “over- “under- “wrong

Name (macro) (micro) errors” payment” payment” issue” errors” payment” payment” issue”

LR 0.229 0.801 0.805 0.211 0.088 0.00 0.994 0.013 0.001 0.00
RF 0.284 0.805 0.814 0.498 0.278 0.400 0.985 0.181 0.023 0.042
CatBoost 0.459 0.842 0.853 0.720 0.655 0.705 0.981 0.409 0.143 0.096

TabNet 0.313 0.808 0.819 0.511 0.348 0.734 0.981 0.177 0.006 0.045
DeepFM 0.289 0.807 0.823 0.459 0.250 0.727 0.970 0.237 0.002 0.008
WideDeep 0.311 0.810 0.825 0.455 0.000 0.704 0.966 0.261 0.000 0.018
DCN 0.337 0.804 0.813 0.565 0.000 0.500 0.992 0.105 0.000 0.004

Features which were identified as especially important can be found
in Figure 5, with description in Table 3.

Most of these important features can be grouped into one of
these three sets:

(1) Featureswhich describe the individual’s previous occupation,
including salary;

(2) Features related to time (date of the claim, etc);
(3) Features with information about administrative decisions

made prior to the benefit audit.
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(a) F1 score for CatBoost model trained on data from
1 previous years and evaluated on the next year.

(b) F1 score for CatBoost model trained on the data
from 3 previous years and evaluated on the next year.

Figure 4: Performance of CatBoost when trained on previous years’ data

Figure 5: CatBoost feature importance

6 DISCUSSION
In this section we discuss the results of our evaluative assessment
of model performance. In particular, we investigate the results of
CatBoost, discuss the importance of goodness of fit between data
and methods, highlight how model explainability relates to public
values, and identify limitations of our analysis.

6.1 Model Performance
The results show that all of the evaluated models, including logistic
regression, have reasonably high micro F-scores. This means that
the average performance with respect to making both Type I and
Type II errors is reasonably strong for all models tested. This, in
turn, suggests that ML-based AI may be a good tool for auditing

administrative data for errors. However, a closer look reveals cru-
cial performance differences across and within all models that have
substantive implications for their efficacy in practice. When we
evaluate model performance by individual class, it is clear that the
micro F-scores are unduly positively inflated by the precision and
recall values for the “No errors” class. This is a problem, because
while overall performance is important, the most important task is
to correctly identify and classify errors. Model performance dete-
riorates sharply when each class of error is evaluated separately.
This is particularly severe in the case of the WideDeep and DCN
models for both precision and recall with respect to underpayment
errors: they are completely incapable of classifying this type of
error. DeepFM has similar challenges, though its precision score
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administrative data for errors. However, a closer look reveals cru-
cial performance differences across and within all models that have
substantive implications for their efficacy in practice. When we
evaluate model performance by individual class, it is clear that the
micro F-scores are unduly positively inflated by the precision and
recall values for the “No errors” class. This is a problem, because
while overall performance is important, the most important task is
to correctly identify and classify errors. Model performance dete-
riorates sharply when each class of error is evaluated separately.
This is particularly severe in the case of the WideDeep and DCN
models for both precision and recall with respect to underpayment
errors: they are completely incapable of classifying this type of
error. DeepFM has similar challenges, though its precision score
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Table 3: Descriptions of variables that are important for the CatBoost model

Name of the feature Description of the feature

firstcompwk Date of first compensable week
occodelast Occupation code of the last employment
monredet Monetary redetermination
claimtype Type of UI claim (new claim, reopened claim, transitional claim)
firstcompwkend First compensable week ending date
bpwbef Base period wage before the investigation
remainingbal Remaining Balance (RB) as of key week ending date
hqwbef High quarter wages before investigation
keyweek Week in which claim was filed (beginning date)
individualid Numeric indicator for each individual UI claim
taxratelastemp Last tax rate for the individual
sepbef Reason for separation determination before investigation
jobcon Number of job contacts listed for key week
monstatbef Reason for monetary denial before investigation
rclstatbef Claimants recall status for the determination before investigation
byb Benefit year beginning
datapickup Date of picking up data for storage
lasterps Date of claimants most recent ERP up to and including Key Week
twbaseq Taxable Wage Base
suplogin Supervisor identification

is at least equivalent to classifying at random (though this is still
decidedly poor performance)5. In fact, none of the models’ recall
values for underpayment or for “Wrong issue” are better than choos-
ing at random. Performance improves somewhat with respect to
recall for overpayment errors, but here only CatBoost and Wid-
eDeep perform better than choosing at random. Model precision
with respect to the three classes of error is stronger — with the
exception of logistic regression, which performs uniformly poorly
— but still significantly worse than one would expect from their
micro F-scores. Once again, WideDeep and DCN are incapable of
handling underpayment errors, and DeepFM is only equivalent to
random choice.

6.2 CatBoost Performance
It is interesting to note that CatBoost outperformed all other models
across all measures, with the singular exception of precision for
“Wrong issue” errors, where DeepFM and WideNet scored higher
(though this margin is small, and both DL models perform signif-
icantly worse than CatBoost for most metrics). CatBoost’s domi-
nance is particularly noteworthy for precision on both over- and
underpayment errors. This result runs contra to the broader enthu-
siasm for the power of DL classifiers in popular science and the
media. It may therefore come as a surprise to public administrators
and managers who are not fully versed in the technical capabilities
and limitations of modern AI research that a random forest-based
approach would be the best fit for the task of auditing administrative
data. Viewed in this light, our findings highlight the need for public
administrators and managers either looking to adopt AI in their

5Importantly, this comparison is made against a best-case counterfacutal dataset where
all 4 classes were perfectly balanced, with the odds of making a correct decision at
random being 1/4 = 0.25

organizations or being sold on the prospect by private software and
professional services vendors to become “informed consumers” of
these technologies.

Similarly, the fact that CatBoost performed better when trained
on only the previous year’s data compared to three preceding years
may be counter-intuitive. Conventional wisdom suggests that, all
else equal, analytic performance should increase as more relevant
data are available. One possible case-specific explanation for these
results is the volatility of UI claims over time. As its name implies,
usage of unemployment insurance is highly correlated to both
national and regional labor market conditions; as employment pos-
sibilities worsen, the number and variety of UI claims increases (and
vice versa). It is possible that using training data that are lagged by
more than one year attenuates classifier performance because the
fundamental labor market conditions that motivated prior claims no
longer apply. Exploring the relationship between historical claims
data, labor market conditions, and whether and how they condition
data to be more or less useful for training classifiers is one avenue
for future research.

6.3 Importance of Goodness of Fit
Our results also demonstrate the importance of assessing the good-
ness of fit between technology and task. Here, the first assessment
is whether AI should be used to audit UI claims in particular, and
social insurance claims in general. The evidence paints a contin-
gent picture. In terms of general performance, every ML classifier
demonstrated some capacity to correctly predict erroneous claims
that exceeded random chance. This suggests that AI has, at a mini-
mum, the potential to be a useful tool for helping auditors screen
the millions of claims that are filed annually. However, the perfor-
mance of all of the classifiers, including CatBoost, is too poor to
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recommend their use in unsupervised settings or for their decisions
to be given too much weight without substantive follow-up by
human auditors. In this way, our results suggest a use for AI as a
decision support system (DSS) to help initially filter UI claims in
likely need of further investigation.

Conditional on deciding to implement AI in this context, the
second assessment of fit is between different classifiers. Here, our
analysis suggests that the CatBoost classifier is the dominant choice
(again, with the singular exception of precision for “Wrong issue”
errors) among those tested. However, in practice it is possible, if not
likely, that certain classifiers will outperform others for detecting
some types of errors but not others. This suggests that an ensemble
approach drawing on the optimal classifier on a case-by-case basis
rather than a “one size fits all” uniform solution is likely to produce
the best results for administrative organizations.

6.4 Explainability
An important potential advantage of CatBoost is its explainability.
In contrast to DL models, which are generally hard to scrutinize
and explain intuitively [44], CatBoost essentially learns a flow-
chart diagram for classification. In this way, CatBoost is scrutable.
For example, a CatBoost can relatively easily be investigated with
respect to which features drive classifications, as in Figure 5. As
discussed in Section 2, explainability is an important public value
related to democratic theory and the rule of law. Also in the case of
administrative errors, explainability is a relevant value for intrinsic
as well as instrumental reasons.

An explainable model potentially allows to understand why a
certain administrative error occurred. This, as such, promotes public
values in the sense that it furthers transparency and accountability
towards claimants and citizens. Moreover, an explainable model is
easily consistent with demands rooted in the value of the rule of law,
requiring that decisions are not made arbitrarily. The same goes for
the identification of administrative errors. In order to accord with
the rule of law, the reasons why an investigation was opened, or the
reasons why an improper payment occurred, need to be recorded.

From a policy and managerial perspective, the benefits of ex-
plainability also include the potential for proactively addressing
the source of administrative errors. Taken to its most extreme for
illustration, a classifier that could perfectly predict which claims
contained errors but could not explain how it arrived at a given
decision would have no practical use for those interested in pre-
venting errors before they occur. Explainability allows agency staff
to learn from what the machine learned, and use this knowledge to
make programmatic, technical, or other changes to prevent future
errors. This capacity is of critical importance to the State workforce
agencies responsible for administering UI in the US, because the
federal government evaluates state agency performance - and im-
poses funding sanctions for nonperformance - based on the number
of detected payment errors.

6.5 Limitations
Our results require important caveats. The most important of these
is that we are limited to the use of publicly accessible data on UI
claims. While these data are relatively rich and span a long period of
time by the standards of public administration and policy research,

they are limited in two fundamental ways. First, they are a (stratified
proportional random) sample of the population of UI claims from
2002-2018. This limitation is partially a function of the need to
sample large-n data for auditing using traditional, non-MLmethods,
and also likely due to cost and technical limitations with respect to
making the data publicly accessible. Second, they do not include
sensitive personal, financial, and employment data that are available
to State workforce agencies and the Department of Labor. This latter
limitation is necessarily born to protect the privacy and security
of claimants. But both nevertheless limit our classifiers’ potential
performance. Both precision and recall are likely to increase if
the models were trained on the full population of claims and the
full set of features available to government auditors. Furthermore,
this may be a particular handicap to the Deep Learning classifiers,
which are particularly well-suited for identifying patterns in high-
dimensional, complex data. It may be that DL classifiers outperform
CatBoost when trained on “live” data.

With these limitations in mind, our results still contribute to
our understanding of AI’s potential for identifying administrative
errors in social insurance programs. When considered as a whole,
our findings highlight the importance of distinguishing between
overall precision and recall vs. by-class scores when dealing with
unbalanced data, and thus illustrate the challenge of evaluating AI
performance for public managers.

7 CONCLUSION
We used the case of unemployment insurance (UI) in the United
States to consider the ethical and practical dimensions of using AI to
detect administrative errors, operationalized as improper payments
of UI benefits. Drawing upon longitudinal data on claims audits and
State-level UI policy differences, we trained and evaluated several
types of classifiers, including logistic regression, random forest,
and deep learning models. Our results show that a random forest
classifier using gradient descent boosting (CatBoost) outperformed
all others, including multiple popular deep learning models. We
then evaluated this classifier’s performance when training data
were restricted to the previous year or the previous three years, and
found that performance was superior for all classes when using
only the last year of data.

Our results contribute to the literature on AI applications in the
public sector, and also have value for practitioners. Peculiarities of
administrative data make it crucial to assess beforehand how well
some technology fits a given task. Likewise, public administrators
should not assume that well-known technologies, such as deep
learning, will necessarily perform best. Furthermore, restricting
training data may increase performance. Future research is needed
to extend these findings into other administrative and policy do-
mains, to incorporate additional features, and to examine whether
and how variations of State-level policies and administration con-
tribute to differential rates of errors across jurisdictions.
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