
2018 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining (ASONAM)

DE-Crawler: A Densification-Expansion Algorithm for Online Data Collection

Katchaguy Areekijseree
Department of EECS
Syracuse University

Syracuse, NY
kareekij@syr.edu

Sucheta Soundarajan
Department of EECS
Syracuse University

Syracuse, NY
susounda@syr.edu

Abstract—Over the past two decades, online social networks
have attracted a great deal of attention from researchers.
However, before one can gain insight into the behavior or
structure of a network, one must first collect appropriate
data. Data collection poses several challenges, such as API or
bandwidth limits, which require the data collector to carefully
consider which queries to make. Many network crawling meth-
ods have been proposed; however, their performance depends
on network structure. In particular, our previous work in [1]
has shown that existing algorithms tend to either (1) Do well
at exploring dense areas of a network, but have difficulty in
transitioning to new areas of the network, or (2) Easily move be-
tween network regions, but fail to fully explore each region. In
this work, we introduce DE-Crawler, a novel network crawler
that attempts to capture the best of both worlds. DE-Crawler
consists of two main stages: Densification, in which the crawler
aims to find as many nodes as possible in the current dense
region (or community), and Expansion, in which the crawler
tries to escape from its current region and move to another
dense region. We show that DE-Crawler performs well across
networks with different structural properties, outperforming
baseline algorithms by up to 28%.

1. Introduction
Complex networks, including online social networking

sites, the WWW, and communication networks, have gained
a great deal of attention from the researchers in a wide
range of fields. By studying these networks, we are able to
gain deep insight into societal-scale human behavior, such
as understanding how groups form, information spreads, or
friendships dissolve. However, before one can attempt to
answer these questions, one must first collect network data.

Currently, many researchers choose to collect data from
Online Social Networking Sites (OSNs), such as Twitter or
Facebook, because these sites provide a convenient accessible
channel (e.g. API) that allows anyone to obtain the data.
However, collecting data though the API may require a
significant amount of time or money. While it is possible to
purchase faster access, these costs can be prohibitively large.
Collecting appropriate data while staying within resource
constraints (such as time limitations) can thus be challenging,
and one must be careful to use their limited resources in a
way that maximizes the quality of data that they obtain.

In this paper, we consider the problem of online network
crawling, otherwise known as network sampling through

Figure 1: Performance of DE-Crawler vs. baseline methods
on DBLP-2012, at the task of maximizing node coverage
with a maximum query budget of 10% of the total number
of nodes. DE-Crawler outperforms all the baselines.

crawling. To crawl a network, a crawler starts with a single
observed node, and has no other information about the
underlying network. To obtain information, the crawler
performs a series of queries through the API. Here, we
assume here that a list of all the neighbors (e.g. friends) of
the queried node are returned in response to the query. These
returned nodes are now considered to be observed, and in
each step, the crawler queries a node that was observed but
not queried in order to expand the sampled network and
learn more information about the network. This process is
repeated until the budget (e.g., time or money) are exhausted.

When collecting data, there may be many crawling goals
of interest, such as finding samples that are unbiased with
respect to some property, locating ‘important’ nodes, or
finding a sample that preserves information flow patterns.
In this work, we focus on maximizing the total number of
nodes observed: i.e., “node coverage”. We selected this goal
because it is closely tied to many important applications,
including crawling for census-type applications [2], crawling
to preserve communities [3] and crawling to estimate node
centrality [4].

The literature contains a large number of proposed crawl-
ing algorithms for this task. Some of these methods perform
well, but they are rarely consistent across network structures.
In our previous work [1], we found that network structural
properties have a strong effect on the algorithms performance.

IEEE/ACM ASONAM 2018, August 28-31, 2018, Barcelona, Spain
978-1-5386-6051-5/18/$31.00 c© 2018 IEEE

More specifically, strong community structure can obstruct a
crawler from being able to move from one region to another
region of the network. As a result, greedy approaches like
Maximum Observed Degree (MOD) [5] works very
well when the communities overlap with one another, but
perform poorly when there are clear borders between regions.

To tackle this problem, we propose a novel crawling
algorithm, DE-Crawler, in which the crawler can seamlessly
transition to different regions of the network. It consists
of two main stages: Densification and Expansion. The
Densification stage aims to discover nodes in the current
region, while the Expansion stage aims to expand the sampled
network by moving to another dense region. DE-Crawler
is able to capture the best aspects of the existing algorithms,
and achieves outstanding performance across domains. As
an example, see Figure 1 for a result on the DBLP-2012
citation network on the node coverage task. DE-Crawler
performs better than the baseline method; and moreover, we
see this behavior regardless of network structure. The main
contributions of this paper are:

1) We present DE-Crawler, a novel crawling method, for
the task of maximizing node coverage with a fixed query
budget. Our experimental results show that DE-Crawler
outperforms baseline methods by up to 28%.

2) We perform an extensive experimental analysis on
networks from diverse categories, including collaboration,
Facebook, OSNs, the WWW and technological networks.
We show that DE-Crawler consistently performs well across
different networks types and structures.

2. Related Works
The literature on network sampling can be roughly

separated into 1) down-sampling and 2) sampling through
crawling. With down-sampling, one possesses the complete
network dataset, and wishes to scale it down to some
desired size (e.g. the entire dataset is too large to fit into
memory). The sample should maintain the relevant properties
and characteristics of the original network. In the crawling
scenario, one begins with no information about the network
other than knowledge of a single node. We can obtain
additional information by performing queries on observed
nodes, so the observed sample is expanded from the single
initially observed node. The decision on which node to query
next is based on the network structure observed so far.

Leskovec and Faloutsos study the characteristics of
different algorithms under the down-sampling scenario [6].
They study and evaluate the algorithms based on how well
the sampled graph maintains properties of the original graph,
and conclude that a Random Walk method is best. Maiya
and Berger-Wolf present a down-sampling algorithm that
aims to preseve the community structure [3]. The idea is to
select the node with the most neighbors outside the current
sample. They show that a sample captures the community
structure of the original network. However, other network
properties of the sampled graph are not taken into account.

A similar idea of maintaining community structure under
the crawling scenario was introduced in [7]. Salehi et al.
introduce PageRank-sampling(PRS). The algorithm samples

nodes to explore the region where the crawler is present, by
selecting the node with the highest estimated PageRank. Then,
it attempts to escape from the current region by selecting
a node with low estimated PageRank but high estimated
unobserved neighbors. Experiments show that the sampled
graph produced by PRS preserves community structure.

Gjoka et al. propose the Metropolis-Hastings Random
Walk algorithm to crawl an unbiased sample of Facebook
network [8]. The key idea of the algorithm is to balance
the visiting frequencies between high degree and low degree
nodes. The results demonstrate that MHRW produces an
approximate uniform sample while both BFS and Random
Walk produce a sample with a biased degree distribution.

Breadth-first search (BFS) algorithm is widely used for
crawling large networks (e.g. OSNs and the WWW). One of
the largest OSN crawling studies is presented in [9]. Mislove,
et al. study and analyze properties of several OSNs (e.g.
Flickr, YouTube and LiveJournal). BFS crawler is used for
collecting network data and confirm that these networks have
power-law, small-world and scale-free properties. Similarly,
Ahn et al. study a large South Korean OSN, CyWorld [10].
A snowball sampling technique is used. They claim that
snowball sampling can discover high degree node, which
help a crawler expand the search region.

Avrachenkov, et al. present a greedy approach called
Maximum Observed Degree (MOD) [5]. The algorithm aims
to maximize the node coverage of the sampled graph. The
crawler selects a node with largest observed degree in each
step. The MOD performance significantly outperforms other
algorithms like BFS and RW. They state that sometimes
MOD perform poorly, but leave that discussion for future
work. Laishram, et al. show that MOD does not work well on
directed graphs and present PMD crawler [11] that predicts
which k nodes are most likely to have the highest number of
unobserved nodes. PMD works the best on directed networks.

While the literature contains many proposed crawling
methods, there is very little work that gives insight into
these algorithms. One such work is presented in [12]. Ye,
et al. present a large-scale empirical study. Two crawling
objectives are considered: maximizing node coverage and
edge coverage. This work conducts a high-level comparison
of sampling methods. Likewise, Areekijseree, et. al. study the
effect of network properties on the performance of crawling
algorithms [1]. The authors perform an analysis of several
crawling approaches with respect to the task of maximizing
node and edge coverage. Nine popular algorithms are selected
and categorized into three classes: Node importance-based,
Graph traversal-based, and Random Walk. They demonstrate
that if the network contains strong community structure, a
crawler may obstructed by these sharp borders, and have
difficulty in moving between regions of the network. As a
result, node importance-based methods work well on the
large densely connected regions of networks, but get stuck
when network has a clear community structure. In contrast,
Random Walk is mostly unaffected by strong community
structure, but does not fully explore a region before moving
on. Graph traversal-based methods (BFS, DFS) are generally
the worst with respect to these tasks.

Starting node

Densification

Expansion

Expansion
Colored nodes: observed nodes

Uncolored nodes: unobserved nodes

Figure 2: The concept of DE-Crawler algorithm. Densifica-
tion: a crawler focuses on find as many nodes in a current
region. Expansion: it tries to escape the current region and
finds new unexplored dense region.

3. Problem Definition
Let G = (V,E) be a static, undirected, unobserved

network, where V and E are the set of nodes and edges,
respectively. A starting node ns ∈ V and a budget b are given.
The crawler explores the network by querying one node at
a time, up to a total of b queries. To expand the observed
sample, the crawler queries an observed-but-not-queried node.
In response to each query, the algorithm receives all the
neighbors of the queried node. These neighbors have now
been observed. The output is a sampled graph S = (V ′, E′),
where V ′ ⊆ V and E′ ⊆ E, containing all nodes and edges
observed. The goal is to discover as many nodes as possible.

4. Proposed Method: DE-Crawler
4.1. Key Ideas

In our previous work [1], we observed that a major factor
in crawler performance is the ability to fully explore regions
of a graph, while still being able to move between regions
of the graph. In particular, we observe that there are two
important classes of crawlers, but their performance depends
on network structure. Node Importance-based methods are
those that select the node for query based on a centrality
measure computed from the observed graph. These methods
excel when the underlying network contains overlapping
communities and/or community size is relatively large com-
pared to the query budget, because in such networks, the
crawler is able to transition between regions. Still, a Random
Walk crawler is the best when communities are disjoint.

Node Importance-based methods quickly explore individ-
ual regions, but tend to get ‘stuck’ inside a community when
community borders are sharp. As these methods continue
querying nodes within the same community, then even though
each node is queried at most once, many of the queried
nodes’ neighbors will have already been observed; thus, the
total number of observed nodes is small. In contrast, the
Random Walk crawler is capable of moving freely between
regions, but only partially explores each one. Based on these
findings, we propose DE-Crawler, a novel crawling method
that incorporates the best of both worlds.

The basic concept of DE-Crawler is illustrated in Fig-
ure 2. Given a starting node, the crawler aims to discover
and fill out the nodes in a dense region (e.g., a community).
We refer to this stage as the Densification stage. After the
crawler discovers most of the nodes in that region, it attempts

to expand to another dense region. We refer to this stage as
the Expansion stage.

4.2. DE-Crawler algorithm
Pseudocode for DE-Crawler is shown in Algorithms 1

and 2. Users must specify the budget for sample initialization
b
′
, total budget b, and the starting node ns as the input

parameters of the algorithm.
4.2.1. Initialization

When it begins, DE-Crawler conducts an Initialize step
(line 2 in Algorithm 1). Here, the crawler collects a small
sample so that it can obtain information about the underlying
network structure. It uses this stage to initialize certain
necessary parameters. A small amount of budget b′ is used,
where b′ << b. The initial sample can be collected by
using any crawling method, and we adopt the Random Walk-
based method proposed in [13]. Using this technique, we can
estimate the average degree of the network, which will be
used for weight adjustment (discussed in the later section).
The output is a sampled graph S

′
.

4.2.2. Densification
Here, the crawler selects and queries nodes with the

goal of exploring the current region. Pseudocode is shown
in Algorithm 2. The intuition here is to quickly find as
many nodes as possible, since real networks are known to
contain communities that are internally densely connected.
Therefore, the sooner the crawler finds the highly-central
hub nodes (e.g. high degree nodes), the faster the crawler
can observe the remaining nodes in the region. Building on
our earlier work in [1], this stage is based on the success of
the Node Importance-based methods in exploring individual
regions [1]. The basic idea is to pick a node with the highest
observed centrality (i.e. degree/PageRank centrality) since it
is likely that these high centrality nodes are hub nodes. In
this way, each query observes many new nodes.

Node Selection: In order to select a node that will give
high true degree, DE-Crawler identifies candidate query

Algorithm 1 DE-Crawler

1: function DE-CRAWLER(ns, b, b
′
)

2: S = Initialize(ns, b
′
)

3: for t = b
′

to b do
4: vd = Expansion(S)
5: S

′
= Densification(vd)

6: S = Merge(S, S
′
)

7: return S

Algorithm 2 Densification

1: function DENSIFICATION(v)
2: for sdt < set or t < b ; t+ = 1 do
3: V

′
, E

′
= Query(v)

4: sdt = α1 · d
new
v

dex
v

+ β1 · sdt−1
5: set = α2 · d

seen
v

dex
v

+ β2 · set−1
6: v = argmaxv∈Vo

{Φ(v) = d̂ov · (1− ĉv)}
7: S

′
= updateSample(V

′
, E

′
)

8: return S
′

nodes κ as those in the top 20% as ranked by observed
degree.1 For each candidate v ∈ κ, a score Φ(v) is calculated.
The score is defined as Φ(v) = d̂ov · (1− ĉv), where dov and
ĉv are, respectively, the normalized observed degree and
observed clustering coefficient of node v. This formula is
motivated by the observation that hub nodes tend to have
high degree and low clustering coefficient [14]. The crawler
then selects and queries the node v with the highest score.

Switching criterion: After each query, a crawler must
decide whether to keep exploring, or escaping from the
current region. To do so, two scores are computed at t-th
step: the densification score sdt and the expansion score set .
These scores are used to approximate the number of nodes
left unexplored.

The switching happens when sdt < set . As the crawler
stays in a region, the number of observed nodes increases
while the number of new nodes added will start to decrease
(diminishing marginal returns). The crawler will initially find
many new nodes in the same community, but this amount
drops as more and more nodes in the region are queried.

At each step t, the sdt and set are calculated (line 4
and 5 in Algorithm 2). These scores have two terms which
incorporate the current stage and previous stage of the sample.
The Densification score sdt indicates how many new unseen
nodes are found after node v is queried at step t. It is defined
as sdt = α1· d

new
v

dex
v

+β2·sdt−1, where dnewv is the number of new
edges that connect node v to new discovered nodes after the
query and dexv is the excess degree, which is defined as the
difference between the true degree and the observed degree
of the node before the request. α and β are the weighting
parameters that control the influence of the current score
and the previous score.

On the other hand, the Expansion score set measures the
amount of nodes that have been seen so far, which is given
by the ratio of dext, the number of new edges that link to
already-observed nodes, to excess degree dex. It is defined
as set = α2 · d

seen
v

dex
v

+ β2 · set−1, where dseenv is the number of
new edges that connect node v and nodes that already be in
the sample before a request.

β1 and β2 are parameters that weight the densification
and expansion scores of the sample at step t− 1. We have
observed that setting β1 = β2 = 0.5 gives us the best results.

However, the algorithm is sensitive to the values of α1

and α2. As the sampling process goes on, the number of
observed nodes increases while the number of new nodes
drops. We observe that se increases very quickly, because
more and more of the same nodes are observed. So, if α1 and
α2 are assigned with equal weight, the score will be biased
towards expansion. To tackle that, we keep the value of α2

lower than α1. With several trials, we found that setting α2

to 1, and varying the value of α1 according to the network,
works best. We initialize α1 as follows:

Generally speaking, if the network is easy to expand, we
want the crawler to spend more time on densification than on
expansion. To set α1, the crawler looks at the initial sample
to estimate the expansion factor. We adopt the idea from work

1. This strategy is based on the law of the vital few or the 80/20 rule.

on dynamic processes, e.g. epidemic spreading or information
diffusion, to estimate the expansion factor. We set α1 to be
the ratio between the maximum degree and average degree
of nodes in the initial sample (α1 = dmax/d̂). This ratio is
closely related to “epidemic threshold” τ , which governs
how fast an epidemic can spread, and thus is also related to
how quickly the crawler can expand the sample [15].
4.2.3. Expansion

The crawler attempts to move out of the current region
and attempts to search for a new unexplored dense region.
In the spirit of an explore-exploit algorithm, we use the
approach of choosing a node uniformly at random from
the list of observed-but-not-queried nodes. In the earlier
Densification stage, DE-Crawler selected a node from the
top 20% of nodes as ranked by observed degree; here,
DE-Crawler selects a random node in the bottom 80% of
observed degrees, since these nodes are poorly connected to
the sampled network.

5. Experimental Setup
We compare DE-Crawler to seven baseline crawling

methods RW, BFS, MOD, OPIC, Snowball, DFS, and
Random. Due to space constraints, we present results
only for the following four baselines: RW, BFS, MOD and
OPIC. We chose these methods because our previous work
in [1] grouped them into three classes. These four methods
represent the best of each class. The details of these baseline
algorithms are described as follows:
1) Maximum Observed Degree (MOD): A crawler selects

the observed-but-not-queried node that has the highest
observed degree. This method works well when communities
are overlapping [5].
2) Online Page Importance Computation (OPIC): It is

an online algorithm which aims to estimate each node’s
centrality score with only local updates. OPIC belongs to
the same class as MOD in [1], and outperforms MOD in a
some cases. In each step, the algorithm updates the scores
of the most recently queried node and its neighbors. Each
node is given an initial score, and the score is distributed
evenly to it neighbors after each query. The node with the
highest score is selected for the next query [16].
3) Random Walk (RW): A crawler transitions to a random

neighbor of the latest queried node. Nodes can be visited
multiple times but crawler only queries a node if it was not
queried before. According to [1], RW is the most stable
algorithm, performing consistently across network types.
4) Breadth-first Search (BFS): Due to its simplicity, BFS

is one of the most popular crawling algorithms [9]. Nodes
are selected and queried in FIFO fashion.

As described in [1], networks of the same type tend to
have similar structural properties, and there is no single
method that performs the best across different types of
networks. As shown in [1], MOD and OPIC perform the
best when 1) the underlying network contains overlapping
communities and 2) the size of each community is large
compared to the query budget, even if the communities are
disjoint and have sharp borders. On the other hand, the
RW crawler is the best on networks that contain disjoint

communities structure. The results show that its performance
is not affected by network properties. The BFS crawler is
generally a weak performer, but we include it here due to
its popularity as a crawling algorithm.

In our experiments, we use a total of eighteen networks
from different categories. The statistics of each network
are provided in Table 12. We perform 10 runs on each
network and report the average fraction of nodes observed
by each crawler. We set the query budget b to be 10% of
the total nodes in the network and for DE-Crawler, we set
the initialization budget b′ to be 15% of the total budget.

TABLE 1: The statistics of realworld networks used.

Type Network # Nodes # Edges d̂ ĈS Q

1. Collab.

Astro 17903 196973 22.00 436.66 0.63

CondMat 21363 91287 8.55 374.79 0.72

HepPh 11204 117619 21.00 238.38 0.65

Citeseer 227320 814135 71.6 988.34 0.89

2. FB100

Bingham 10001 362893 72.57 1250.13 0.45

JohnsHopkins 5157 186573 72.36 515.70 0.45

WashU 7730 367527 95.09 966.25 0.47

Yale 8561 405441 94.72 856.10 0.43

3. OSN
Anybeat 21250 66892 6.30 259.15 0.48

Slashdot 70068 358648 10.24 173.86 0.36

Hamsterster 2000 16097 16.10 66.67 0.54

4. Web
Google 1299 2774 4.27 34.18 0.93

IndoChina 11358 47607 8.38 153.49 0.94

Webbase-2001 16062 25594 3.19 232.78 0.93

5. Tech.

RL-caida 190914 607611 6.36 856.11 0.86

PGP 10680 24316 4.55 106.80 0.88

Router-rf 2113 6633 6.28 88.04 0.69

WhoIs 7476 56944 15.23 276.89 0.56

To obtain a fair comparison across networks, we compare
the performance of DE-Crawler and the baseline methods
against the greedy oracle, Maximum Excess Degree (MED).
MED assumes that each node’s true degree is known, and in
each step, queries the node with the highest excess degree (the
difference between true degree and observed degree). With
this oracle, we can compute the regret r of each crawler,
as r = (yo − yx)/yo, where yo is the number of nodes
discovered by the oracle, and yx is the number of nodes
discovered by crawler x. Lower values of regret indicate
higher performance.

6. Experimental Results
In this section, we present the performance of our pro-

posed algorithm DE-Crawler against other baseline methods,
as described in Section 5. We evaluate these methods with
respect to the node coverage task (discover as many nodes
as possible). Note that, we compare our algorithm to many
algorithms; RW, BFS, MOD, OPIC, Snowball, DFS and
Random, but these four baselines (RW, BFS, MOD, OPIC)
were best. So, we present the results of these four baselines.

Results are presented in Figure 3, 4 and Table 2. In
Figures 3 and 4, the x-axis represents the query budgets, and
the y-axis represents the fraction of nodes observed in the

2. All of these networks can be found at www.networkrepository.com.

sample. Table 2 shows the overall regret of each method, as
compared to the oracle. Our results show that DE-Crawler
is the best of both worlds: it performs consistently well
across all network types, regardless of community structure.
In all but one of the considered networks, DE-Crawler is
the best performer.

As discussed earlier, RW and MOD are excellent methods,
but the choice of which is best depends on the network
structure. E.g., Figure 3 demonstrates the case where RW
is better than MOD: these networks contain dense, distinct
communities, and MOD has trouble transitioning between
regions. Figure 4 illustrates the case where MOD outperforms
RW: these networks have overlapping communities with fuzzy
borders, allowing MOD to move freely between regions.

But in both cases, as we can clearly see, the performance
of DE-Crawler substantially outperforms all the baselines.
By switching between expansion (moving to new regions)
and densification (exploring the current region), DE-Crawler
is able to gain an improvement of up to 28% as compared
to the best baseline methods. The results in Table 2 also
show that DE-Crawler performs achieves a low regret,
indicating that it performs close to the optimal greedy method.
DE-Crawler has the lowest average regret of approximately
0.22, which is dramatically better than RW, the next best
method.

From the results, it is clear that DE-Crawler outperforms
all the baselines at the task of maximizing node coverage. It
has a very stable performance across the network categories,
suggesting that network structural properties have little effect
on it. By using a mix of the expansion and densification strate-
gies, and transitioning between phases when densification
begins to exhibit diminishing marginal returns, DE-Crawler
is able to achieve outstanding performance.
TABLE 2: The average regret of DE-Crawler and baseline
algorithms (lower value means better performance).

Network DE RW MOD OPIC BFS

1.

AstroPh 0.144 0.159 0.202 0.194 0.185

CondMat 0.292 0.349 0.440 0.396 0.406
HepPh 0.158 0.246 0.350 0.205 0.270
Citeseer 0.359 0.467 0.452 0.458 0.557

2.

Bingham 0.023 0.024 0.130 0.145 0.026

JohnsHopkins 0.034 0.041 0.129 0.148 0.047
WashU 0.012 0.013 0.149 0.163 0.027
Yale 0.007 0.020 0.080 0.107 0.023

3.

Anybeat 0.082 0.110 0.079 0.070 0.442

Slashdot 0.045 0.129 0.045 0.046 0.419
Hamsterster 0.119 0.165 0.184 0.218 0.336

4.

Google 0.450 0.676 0.471 0.582 0.612

Indochina 0.522 0.623 0.583 0.631 0.718
Webbase 0.730 0.764 0.730 0.781 0.764

5.

RL-caida 0.359 0.370 0.372 0.449 0.419

PGP 0.383 0.465 0.416 0.453 0.536
Routers-RF 0.219 0.307 0.304 0.265 0.397
WhoIs 0.130 0.184 0.274 0.270 0.469

Average 0.226 0.284 0.299 0.310 0.370

0.0

0.2

0.4

0.00 0.03 0.05 0.08 0.10
Fraction of nodes queried

F
ra

ct
io

n
of

 n
od

es
 fo

un
d

MOD
RW
BFS
OPIC
DE−Crawler

CondMat

(a) CondMat

0.2

0.4

0.6

0.03 0.05 0.08 0.10
Fraction of nodes queried

F
ra

ct
io

n
of

 n
od

es
 fo

un
d

MOD
RW
BFS
OPIC
DE−Crawler

hamsterster

(b) Hamsterster

0.0

0.2

0.4

0.6

0.8

0.00 0.03 0.05 0.08 0.10
Fraction of nodes queried

F
ra

ct
io

n
of

 n
od

es
 fo

un
d

MOD
RW
BFS
OPIC
DE−Crawler

WhoIs

(c) WhoIS

0.0

0.2

0.4

0.6

0.00 0.03 0.05 0.08 0.10
Fraction of nodes queried

F
ra

ct
io

n
of

 n
od

es
 fo

un
d

MOD
RW
BFS
OPIC
DE−Crawler

AstroPh

(d) AstroPh

Figure 3: DE-Crawler consistently outperforms or matches the best baseline method on networks that RW outperforms MOD.

0.0

0.1

0.2

0.3

0.00 0.03 0.05 0.08 0.10
Fraction of nodes queried

F
ra

ct
io

n
of

 n
od

es
 fo

un
d

MOD
RW
BFS
OPIC
DE−Crawler

pgp

(a) PGP

0.1

0.2

0.3

0.4

0.5

0.00 0.03 0.05 0.08 0.10
Fraction of nodes queried

F
ra

ct
io

n
of

 n
od

es
 fo

un
d

MOD
RW
BFS
OPIC
DE−Crawler

routers−rf

(b) Routers-RF

0.0

0.1

0.2

0.3

0.4

0.00 0.03 0.05 0.08 0.10
Fraction of nodes queried

F
ra

ct
io

n
of

 n
od

es
 fo

un
d

MOD
RW
BFS
OPIC
DE−Crawler

indochina

(c) IndoChina-2004

0.25

0.50

0.75

0.00 0.03 0.05 0.08 0.10
Fraction of nodes queried

F
ra

ct
io

n
of

 n
od

es
 fo

un
d

MOD
RW
BFS
OPIC
DE−Crawler

anybeat

(d) Anybeat

Figure 4: DE-Crawler consistently outperforms or matches the best baseline method on networks that MOD outperforms RW.

7. Conclusion
We considered the problem of online network crawling

with the goal of maximizing node coverage. Our previous
work has demonstrated that the performance of existing
crawling methods is heavily affected by network prop-
erties [1]. Intuitively, a strong community structure can
obstruct a crawler from moving between regions. Based
on that observation, we introduced DE-Crawler, which
consists of two main stages: Densification, which explores
the current region, and Expansion, in which the crawler
transitions to a new region. Our results over 18 datasets
show that DE-Crawler outperforms all other baselines, with
an improvement of up to 28% over the next best baseline.
Moreover, DE-Crawler is consistently the best over all
considered network types, and the results also show that
DE-Crawler performance is close to the performance of the
optimal greedy crawling algorithm.

8. Acknowledgements
We thank Jeremy Wendt of Sandia National Laboratories

for thoughtful comments and conversations. This material
is based upon work supported in part by the U. S. Army
Research Office under grant number #W911NF1810047.

References
[1] K. Areekijseree, R. Laishram, and S. Soundarajan, “Guidelines for

online network crawling: A study of data collection approaches and
network properties,” in Proceedings of the 10th ACM Conference on
Web Science. ACM, 2018, pp. 57–66.

[2] H. Kwak, C. Lee, H. Park, and S. Moon, “What is twitter, a social
network or a news media?” in 19th international conference on World
wide web, 2010.

[3] A. S. Maiya and T. Y. Berger-Wolf, “Sampling community structure,”
in Proceedings of the 19th international conference on World wide
web. ACM, 2010, pp. 701–710.

[4] ——, “Online sampling of high centrality individuals in social
networks,” in Pacific-Asia Conference on Knowledge Discovery and
Data Mining. Springer, 2010, pp. 91–98.

[5] K. Avrachenkov, P. Basu, G. Neglia, B. Ribeiro, and D. Towsley, “Pay
few, influence most: Online myopic network covering,” in Computer
Communications Workshops, 2014.

[6] J. Leskovec and C. Faloutsos, “Sampling from large graphs,” in
Proceedings of the 12th ACM SIGKDD international conference on
Knowledge discovery and data mining. ACM, 2006, pp. 631–636.

[7] M. Salehi, H. R. Rabiee, and A. Rajabi, “Sampling from complex
networks with high community structures,” Chaos, vol. 22, no. 2,
2012.

[8] M. Gjoka, M. Kurant, C. T. Butts, and A. Markopoulou, “Unbiased
sampling of facebook,” preprint arXiv, vol. 906, 2009.

[9] A. Mislove, M. Marcon, K. P. Gummadi, P. Druschel, and B. Bhat-
tacharjee, “Measurement and analysis of online social networks,” in
7th ACM SIGCOMM conference on Internet measurement. ACM,
2007, pp. 29–42.

[10] Y.-Y. Ahn, S. Han, H. Kwak, S. Moon, and H. Jeong, “Analysis of
topological characteristics of huge online social networking services,”
in International conference on WWW, 2007.

[11] R. Laishram, K. Areekijseree, and S. Soundarajan, “Predicted max
degree sampling: Sampling in directed networks to maximize node
coverage through crawling,” in 2017 IEEE Conference on Computer
Communications Workshops (INFOCOM WKSHPS), May 2017, pp.
940–945.

[12] S. Ye, J. Lang, and F. Wu, “Crawling online social graphs,” in 12th
International Asia-Pacific Web Conference, 2010.

[13] A. Dasgupta, R. Kumar, and T. Sarlos, “On estimating the average
degree,” in Proceedings of the 23rd international conference on World
wide web. ACM, 2014, pp. 795–806.

[14] M. Bloznelis et al., “Degree and clustering coefficient in sparse random
intersection graphs,” The Annals of Applied Probability, vol. 23, no. 3,
pp. 1254–1289, 2013.

[15] D. Chakrabarti, Y. Wang, C. Wang, J. Leskovec, and C. Faloutsos,
“Epidemic thresholds in real networks,” ACM Transactions on Infor-
mation and System Security (TISSEC), vol. 10, no. 4, p. 1, 2008.

[16] S. Abiteboul, M. Preda, and G. Cobena, “Adaptive on-line page
importance computation,” in Proceedings of the 12th international
conference on World Wide Web, 2003.

