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a b s t r a c t 

This paper introduces a new graph-theoretical concept of hidden community for analysing 

complex networks, which contain both stronger or dominant communities and weak com- 

munities. The weak communities are termed as being with the hidden community struc- 

ture if most of its members also belong to the stronger communities. We propose a meta- 

approach, namely HICODE (HIdden COmmunity DEtection), for identifying the hidden com- 

munity structure as well as enhancing the detection of the dominant community structure. 

Extensive experiments on real-world networks are carried out and the obtained results 

demonstrate that HICODE outperforms several state-of-the-art community detection meth- 

ods in terms of uncovering both the dominant and the hidden structure. Due to the diffi- 

culty of labeling all ground truth communities in real-world datasets, HICODE provides a 

promising technique to pinpoint the existing latent communities and uncover communi- 

ties for which there is no ground truth. Our finding in this work is significant to detect 

hidden communities in complex social networks. 

© 2017 Elsevier Inc. All rights reserved. 

 

 

 

 

 

 

 

 

 

 

 

1. Introduction 

Over the past decades, community detection has emerged as an essential task in the realm of network analysis, and

provides insight into the underlying structure and potential functions of the networks [1,2] . Early work focused primarily on

identifying disjoint communities that partition the set of nodes within a network [3,4] . More recently, researchers have ob-

served the multiplicity of interwoven memberships of communities and have developed algorithms for finding overlapping

communities [5,6] . Some partitioning techniques are also extended to tackle the overlapping case [7,8] . Within these two

categories, one can further build a hierarchical dendrogram based on the granularity of the detected communities. 

Although much progress has been made, there is a type of new community structure, which we call the hidden commu-

nity structure , that has attracted little attention in the literature. Real-world networks contain sparse community structure,

such as secret organizations or temporary groups, which is considerably weaker than the dense community structure like

families, colleagues or close friends, as evaluated by popular community scoring metrics. If most of the members in the less

modular community also belong to other denser communities, the community is usually overlooked. 

For instance, in a social network, individuals may belong to multiple strong social communities, corresponding to groups

such as families, colleagues and friends. Though overlapping, the connections inside these communities are strong and nu-
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Fig. 1. The illustration of the dominant communities and the hidden communities in a social network. (a) The three cliques correspond to communities 

of students working closely as teams in projects. (b) The three groups of different colors correspond to sports communities with sparser connections. (For 

interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

merous enough that existing overlapping community detection algorithms can perceive and uncover these latent but dom-

inant modular structures. However, in addition to these strong communities, individuals may also belong to some weaker

communities, such as a group of medical patients that see each other at the doctor’s office and communicate infrequently,

or high school alumni whom have infrequent contact. As illustrated in Fig. 1 , the hidden community structure is sparser and

harder for detection. 

For applications in a large variety of scientific disciplines, the hidden structure is of great interest and deserves to be ex-

plored. For example, in Protein-Protein Interaction (PPI) networks [9] , biologists wish to identify gene groups serving similar

functions. However, the current annotation is far from complete [10] , and the dominant, clearest groupings are more likely

to be annotated. In such a scenario, a way to help the biologists identify the hidden, less obvious groups is of great value.

Another example could be a criminal organization in a social network that is much weaker than communities corresponding

to family or location. Identifying this hidden structure in the presence of the stronger community structure is even more

important but faces a major challenge. 

This paper aims to provide insights into the hidden structure. We define the hiddenness value of a community as the

portion of nodes in stronger communities, and present a meta-approach called Hidden Community Detection ( HICODE ) to

identify the dominant structure as well as the hidden structure in networks. HICODE begins by first applying an existing

algorithm as a base algorithm to a network, and then weakening the structure of the detected communities in the network.

In this way, the weaker, hidden community structure becomes visible. This step is repeated iteratively until no further

significant structure is detected. Next, HICODE weakens the structure of the hidden communities, and thus obtains a more

accurate version of the dominant community structure. 

Hidden community structure can be regarded as a special type of overlapping communities. However, existing overlap-

ping community detection methods mainly focus on communities in which a considerably portion of the members are not

“hidden”, that is, they could also belong to other weaker communities but this community is clearly the strongest for these

members. Our experiments also show that they overlook the “hidden communities” while HICODE uncovers the hidden

structure much preciser. 

We believe the insights we obtained on hidden community structure will provide valuable guidance for future investiga-

tions. The main contributions of this paper include: 

• Conception on Hidden Community. We introduce the concept of hidden community structure that exists widely in

social networks, and we formally define the hiddenness value of a community. 
• Methods on Hidden Community Detection. We present HICODE for identifying both the dominant and the hidden struc-

ture. We implement HICODE with several community detection algorithms as the base algorithm, and provide several

structure weakening methods: RemoveEdge, ReduceEdge and ReduceWeight. 
• Validation on real world datasets. Through experiments on a variety of real-world networks, we demonstrate that the

higher the hiddenness value a community is, the harder for an algorithm to locate such community; HICODE outperforms

several state-of-the-art community detection methods on uncovering the hidden communities. 

2. Related work 

In the past decades, a plethora of community detection algorithms have been presented for uncovering communities,

the latent modular structure, based on different metrics and techniques. We give a brief summary for related works in the

area of clustering and community detection. For comprehensive reviews to various community detection algorithms and

techniques, please refer to survey papers [11,12] . 
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2.1. Conventional community detection 

Disjoint community detection. Several popular partitioning algorithms are based on modularity optimization, including 

the Clauset-Newman-Moore algorithm [2] and the Louvain method [4] . Other algorithms use random walks, with the intu-

ition that a good community will ‘trap’ a random walk ( e.g., Walktrap [13] and Infomap [3] .) Model-based algorithms fit the

observed network to a model of network structure. Such models include the stochastic block model, in which the nodes are

partitioned into disjoint groups and the probability of a connection between two nodes depends only on the memberships

of the nodes [14,15] . 

Overlapping community detection. The first algorithm to examine overlapping communities was the Clique Percolation 

algorithm [16] , where a community is defined as a maximal k −clique percolation chain. More recently, other methods based

on cliques or seeds expansion are proposed. For example, OSLOM uses a fitness function and joins together small clusters

into statistically significant larger clusters [6] , and Whang identifies overlapping communities by expanding ‘seeds’ into

full communities [17] . Link communities (LC) is a landmark algorithm that finds communities by performing hierarchical

clustering on the links, which results in overlapping communities of nodes [5] . Another type of overlapping community

detection algorithms identifies communities by expanding ‘seeds’ into full communities [17] , while some algorithms, for

example DEMON [18] , use a label propagation approach. 

2.2. Works closely related to hidden structure 

To the best of knowledge, this is the first work to formally propose and address the hidden community detection prob-

lem. In this subsection, we introduce closely related works in the area of data clustering and community detection. 

Multi-view data clustering. Outside the realm of community detection, researchers have studied the problem of clus-

tering data into multiple alternative groupings. By adopting orthogonal clustering and clustering in orthogonal subspaces,

Cui et al. [19] cluster the data points in different views, where data points of one cluster can belong to different clusters

in other views. By augmenting a spectral clustering objective function to incorporate dimensionality reduction and multiple

views, and to penalize for redundancy between the views, Niu et al. proposed approaches to learn non-redundant subspaces

that provide multiple views simultaneously [20] and iteratively [21] . 

Hidden community detection. In the realm of community detection, similarly to multi-view clustering, there are several

works on multi-valued attributed graph that cluster graphs into densely connected components with homogeneous attribute

values [22,23] , but they still focus on strong communities. For hidden community detection, there are several pioneer and

embryonic works that are proposed independently and almost simultaneously [24–26] . 

Chen et al. [24] remove nodes or edges based on the local Fiedler vector centrality (LFVC) which is associated with the

sensitivity of algebraic connectivity to node or edge removals. Most importantly, they define a concept of deep community

as a connected component that can only be seen after removal of all nodes or edges from the rest of the network. They

prove that their method works on small synthetic networks under stochastic block model framework and do experiments

on small networks of size hundreds. 

Young’s work [25] is most similar in spirit to our work, and they also reference our first version of the work [26] .

They observe that smaller or sparser communities can be ‘overshadowed’ by the larger or denser communities, and com-

munities may appear at different resolutions. Their Cascade approach uses two existing algorithms as base algorithms (LC

[5] and CFinder [16] ), find the first set of communities, remove all internal edges for the current detected communities,

find a second set and repeated the process until no significant communities could be found. Note that communities are

fixed once extracted. Cascade differs from HICODE in two ways. First, instead of strategically reducing the structure of

a detected community, they simply remove all edges within the community. This corresponds to our RemoveEdge com-

munity reduction strategy ( described in detail in Section 4.2 ), which performs poorly, and which was included only for

comparison. Second, while HICODE contains both an Identification stage, in which rough copies of community layers are

obtained, and a Refinement stage, in which the community quality is improved, Cascade only performs the Identification

stage. One consequence of this is that the effects of hidden communities on stronger communities are never accounted

for. 

In our first version of the work [26] , we present Hidden Community Detection ( HICODE ), an algorithm template that

identifies both the strong, dominant community structure as well as the weak, hidden community structure in networks.

In [26] , we implement HICODE using three disjoint community detection methods as the base algorithm, provide detailed

experiments on two synthetic networks (synL2 and synL3) and two small social networks (Grad and UGrad [27] ), and show

that Cascade behaves very similar to LC and they did not really uncover the weak, hidden communities that actually are

incoherent with the dominant communities. In a survey for data and network analysis [28] , and Teng introduces our “hidden

community” as a new graph-theoretical concept. 

This paper is an significant extension of our arXiv version [26] . We provide a formal definition of “hidden community”,

implement HICODE with both disjoint community detection algorithms and overlapping community detection algorithms as 

the base algorithm, improve the algorithm description and provide a mass of experiments on 11 larger and popular real-

world networks as well as synthetic networks to extensively demonstrate the HICODE method. 
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3. Preliminaries 

Let graph G = (V, E) represent a network with n nodes and e edges. Let A be the adjacency matrix of G , the ij -entry

A ij ∈ {0, 1} indicates whether there is an edge connecting nodes i , j . 1 Let C = { C 1 , C 2 , . . . , C K } be all the overlapping communi-

ties, where C k = (V k , E k ) is a comparatively dense subgraph of G . The cardinality of a community is defined as the number

of nodes in this community, i.e. | C k | = | V k | . We first introduce some necessary metrics, then provide formal definitions on

the hidden structure. 

3.1. Metrics 

Modularity. To measure the strength of a set of communities that partition the network, we adopt the popular modularity

metric. Modularity is defined by Newman as the ratio of the number of intra-community edges to the expected number of

edges in the same set of communities if the edges had been distributed randomly while preserving degree distribution [2] . 

The modularity score Q of a partition is calculated by: 

Q = 

K ∑ 

k =1 

Q k = 

K ∑ 

k =1 

[ 

e kk 

e 
−

(
d k 
2 e 

)2 
] 

, (1)

where K is the number of communities in the partitioning, e is the number of edges in the graph, e kk is the number of

edges within community C k , and d k is sum of the node degrees in community C k . Q lies in the range [ −0 . 5 , 1) , with larger

values indicating a stronger community set. 

Definition 1 Modularity of a Community. We call Q k the sum modularity contribution of C k , and the modularity of a

single community is defined as the sum modularity contribution of that community divided by the number of nodes in the

community, i.e. Q k / | C k | . 
Zhang et al. extend Newman’s definition to a set of overlapping communities by considering the belonging coefficient

w ik for node i to community C k [7] . Briefly, w ik = 1 /m if community C k is one of the m communities containing node i .

Then in Eq. (1) , e kk is weighted by e kk = 

1 
2 

∑ 

i, j∈ C k 
w ik + w jk 

2 A i j , where A ij is the ij -entry of the adjacency matrix. We know

d k = 2 e kk + e k _ out , then e k _ out is weighted by 

e k _ out = 

1 

2 

∑ 

i ∈ C k , j / ∈ C k 

w ik + (1 − w jk ) 

2 

A i j . 

The extended definition degenerates exactly to Eq. (1) for disjoint communities. 

Normalized Mutual Information (NMI). We use normalized mutual information (NMI) to capture the similarity of two

partitions X and Y [29] . 

NMI (X, Y ) = 

2 I (X, Y ) 

h (X ) + h (Y ) 
, (2)

where h ( X ) is the Shannon entropy of partition X , and I ( X, Y ) is the mutual information that captures the similarity between

two partitions X and Y . For a set of communities that partition a network, x ∈ X, y ∈ Y p(x ) = | x | denotes the number of nodes

in community x , , and p(x, y ) = | x ∩ y | denotes the number of common nodes in the two communities. The NMI score lies

in the range [0,1], where 1 represents a perfect matching and 0 indicates total independence. 

I(X, Y ) = 

∑ 

x ∈ X 

∑ 

y ∈ Y 
p(x, y ) log 

p(x, y ) 

p(x ) p(y ) 
(3)

h (X ) = −
∑ 

x ∈ X 
p(x ) log p(x ) (4)

For overlapping communities, the extended NMI [30] is chosen as the metric. 

3.2. Definitions 

Assume we have some metric function F:( G, C k ) �→ R ( e.g., modularity [2] or conductance [31] ) that assigns a quality score

to a community. For simplicity, let F k denote the quality of C k in G . Here, we assume that higher scores indicate stronger

communities, but the definition below can be trivially modified for the case when lower scores indicate higher community

quality. 
1 For simplicity, we discuss unweighted graph, but all discussions in this paper are easily extended to weighted graph by letting A ij ∈ [0, 1] to indicate 

the weight of each edge. In the weighted graph, the number of edges then corresponds to the sum of the edge weights. 



96 K. He et al. / Information Sciences 425 (2018) 92–106 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Definition 2 Hiddenness Value of a Community. The hiddenness value H(C k ) of community C k is the fraction of nodes of

C k belonging to various communities with a higher F score. 

Let S k be the set of all stronger communities for community C k , a.k.a. all communities with higher quality score. 

S k = { C i |F i > F k , C i ∈ C} (5) 

The hiddenness value of C k can be calculated as: 

H(C k ) = 

1 

| C k | ·
∣∣∣ ⋃ 

C i ∈ S k 
C i ∩ C k 

∣∣∣, (6) 

a.k.a. the fraction of nodes of C k in stronger communities. 

H(C k ) ∈ [0 , 1] . Intuitively, the higher a community’s hiddenness value is, the more difficult for the community to be

uncovered. 

The goal of the hidden community detection problem is to locate overlapping communities in the network such that

communities having high hiddenness values can be found. Note that there is no single threshold for a ‘high’ hiddenness

value, these values depend on the network under study, the metric being used, and the set of communities. For two com-

munities C i , C j ∈ C, if H(C i ) > H(C j ) , then C i is comparatively hidden as compared with C j , and C j is comparatively dominant

as compared with C i . 

For convenience, we separate the communities into layers. 

Definition 3 Layer. A layer L is a set of communities that partitions or covers the nodes of the network, indicating that 

∀ v ∈ V, ∃ C ∈ L → v ∈ C 

Here we allow trivial communities of size less than 3. 

Definition 4 Hiddenness Value of a Layer. The hiddenness value H(L i ) of a layer L i is the weighted average hiddenness

values of the communities in this layer. 

H(L i ) = 

∑ 

C k ∈L i | C k | · H(C k ) ∑ 

C k ∈L i | C k | 
. (7) 

H(L i ) ∈ [0 , 1] . The dominant layer is the layer with lowest hiddenness value. It is usually the set of communities found

by a standard community detection algorithm that optimizes metric F . A layer is called hidden if it has a comparatively high

hiddenness value. Fig. 1 illustrates a small social network with two layers of communities, the dominant layer corresponds

to project teams and the hidden layer corresponds to sports groups. 

4. Hidden community detection 

4.1. Algorithm overview 

In this section, we propose a meta-approach called HICODE to find hidden community structure in a network. HICODE

uses an existing community detection algorithm as the ‘base’ method, and iteratively weakens the structure of detected

layers to reveal hidden structure. HICODE then applies a refinement procedure to increase the quality of the layers.

Algorithm 1 shows the pseudo code. 

HICODE contains two stages: Identification and Refinement . 

Stage 1. Identification: 

The Identification stage determines the initial layers of communities as follows: 

1. Identify a layer of communities via the base method; 

2. Weaken the structure of the detected layer; 

3. Repeat until the appropriate number of layers are found. 

In this stage, we iteratively identify a set of initial layers by weakening the structure of the previous, stronger layers. 

Section 4.2 presents methods for weakening the detected community structure in order to reveal the hidden structure

beneath. 

A crucial aspect of the Identification stage is to automatically determine the number of layers n L in a network. This is

accomplished by increasing n L until a stopping condition is met, described in detail in Section 4.3 . 

Stage 2. Refinement: 

It is reasonable that stronger community structure can obscure weaker community structure, but critically, we observe

that weaker structure can also hinder the accurate or complete detection of the stronger structures. After the Identification

stage, one has only a rough approximation of the various community layers, and the purpose of the Refinement stage is to

further improve the quality of these detected layers. 

Refinement is an iterative process. In each iteration, we consider each layer, and improve the current layer as follows: 
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Algorithm 1 HICODE. 

Require: graph G = (V, E) , 

base algorithm A base , 

reduce method M Reduce , 

iterations T = 100 as the default, 

number of layers n L . 

Ensure: n L layers of communities { L 1 , · · · , L n L } 
1: G R ← G 

2: for k = 1 : n L − 1 do � Identification Stage 

3: Identify a layer L k ← A base (G R ) 

4: Using M Reduce to weaken the structure of the detected layer L k and get Reduced Graph G R ← M Reduce (G, L k ) 

5: for refinement iteration t = 1 : T do � Refinment Stage 

6: for i = 1 : n L do 

7: Using M Reduce to weaken the structure of All Other detected layers L k 
 = i from original graph G and get reduced 

graph G R 

8: Identify the current layer L i ← A base (G R ) 

9: return the final n L layers { L 1 , · · · , L n L } 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1. Weaken the structures of all other layers from the original network to obtain a reduced network ; 

2. Apply the base algorithm to the resulting network. 

In contrast to the Identification stage, where only the layers found so far (i.e., the stronger layers) are reduced, during the

Refinement stage, we weaken the effects of both the stronger and weaker layers. This is necessary because the weaker layers

can impair detection of the layer currently under consideration, even though they have a smaller impact on the network

structure than the stronger layers. Through this process, a more accurate version of the current layer is produced. 

We use NMI [29,30] to capture the similarity of two partitions or two sets of overlapping communities. For the syn-

thetic data that we consider, the Refinement stage quickly converges within 30 iterations, meaning that the NMI of the

corresponding layers at adjacent iterations is almost 1. For real-world datasets, 100 iterations is generally enough. 

Although the trend over these iterations is to see higher quality community layers (i.e., higher modularity partitions or

coverings), there are fluctuations in this trend. In each Refinement iteration, we calculate the modularity of the detected

layers, and the final output corresponds to the iteration with the highest average modularity score. 

4.2. Reducing methods 

We present the following methods to reduce a single layer of community structure: RemoveEdge, ReduceEdge, and Re-

duceWeight. 

4.2.1. Removeedge 

RemoveEdge weakens a detected community by removing all intra-community edges. This method is inspired by algo-

rithms that find communities by removing edges, such as the classic Girvan–Newman algorithm, which, removes edges with

high betweenness [1] . RemoveEdge works reasonably well when there are few layers and communities in different layers

have comparatively small overlaps. 

4.2.2. Reduceedge 

ReduceEdge approximates each layer as a single stochastic blockmodel, where other edges are regarded as background

noise. This method randomly removes some edges within each community block so that the edge probability in the block

matches the background edge probability of this block. 

For each community C k in a single layer that we want to reduce, we calculate the observed edge probability p k in C k , and

the background block probability q k , as illustrated in the reordered adjacency matrix in Fig. 2 . Let n k and e kk be the number

of nodes and edges inside C k , and d k the sum of degrees of nodes in C k . We regard p k as the actual number of edges in C k
divided by the maximum possible number of edges: 

p k = 

e kk 

0 . 5 n k (n k − 1) 
, (8)

and regard q k as the average outgoing edge density of block C k : 

q k = 

d k − 2 e kk 

n k (n − n k ) 
. (9)

If we treat the observed edge probability p k in community C k as the superposition of the underlying edge probability p ′ 
k

of C k and the background block probability q k , then p k = 1 − (1 − p ′ 
k 
)(1 − q k ) . The conditional probability that it is generated
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Fig. 2. p k and q k of a community block C k . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

by the background noise given an edge in C k is: 

q ′ k = 

q k 
p k 

. (10) 

ReduceEdge removes each edge within community C k with probability 1 − q ′ 
k 

(i.e., it keeps each internal edge with prob-

ability q ′ 
k 
). In this way, edges are randomly removed from C k such that the edge probability within C k matches q k . 

2 

4.2.3. Reduceweight 

This method reduces the weight of each edge within community C k by a factor of q ′ 
k 
, defined in Eq. (10) . Like with

ReduceEdge, we wish to set the weighted probability within C k equal to the average weighted background block probability

q k . 

Note that to use ReduceWeight, one’s base algorithm must support weighted networks. However, the original network

itself need not be weighted, as one can simply set the original weight of every edge to 1. Unlike ReduceEdge, ReduceWeight

is deterministic. ReduceWeight is actually a derandomization of ReduceEdge. 

For all cases, if one has a layer of overlapping communities, then in order to avoid duplicate weakening on the overlap-

ping portions, we sort the communities according to their sizes, weaken larger communities first and do not weaken the

overlapping portion again for subsequent communities in the same layer. 

As we will see in experiments, ReduceWeight is the best-performing method of the three, and ReduceEdge generally

performs better than RemoveEdge. However, one major advantage of ReduceEdge is that it does not require a base algorithm

that supports weighted networks. 

4.3. Selecting the number of layers 

A major challenge for HICODE is determining n L , the appropriate number of community layers. 

4.3.1. Observations 

To give intuition on how to automatically select the number of community layers n L in a network, and the importance of

selecting the appropriate number, we first analyze the synthetic networks presented earlier, in which the true communities

and the correct number of layers are known. 

We consider a variety of values for n L , and make the following observation. If n L is equal to the correct number of layers,

then the similarity (NMI) between each detected layer L i and the corresponding planted layer PL i increases dramatically over

the course of the Refinement stage. That is, as we refine the results, the detected communities become more and more like

the ground truth communities. In contrast, if n L is either too small or too large, then this trend is much reduced. 

Additionally, if the n L is chosen correctly, then during the Refinement stage, the average modularity of the detected layers

increases. If n L is either over- or under-estimated, then this trend declines. 

Fig. 3 illustrates this observation on the SynL3 network( described in detail in Section 5.2 ), which has 3 planted layers. It

shows the average modularity scores after the Identification stage and during the first 10 iterations of the Refinement stage

when we find 2, 3, and 4 layers on this network. The increase in modularity is sharpest at n L = 3 . 

4.3.2. Stopping condition 

Our rule for determining the number of layers n L is motivated by this observation: if one selects the appropriate number

of layers, the output will generally be of a higher quality. 

We begin by setting the number of layers n L = 2 , and increase the number of layers until a stopping condition is met. For

each candidate number of layers n L , HICODE first calculates the modularity of the weakest layer obtained at the Identification

stage. If the value is very low, then there are no more significant layers, so we set n L = n L − 1 and return; otherwise, let Q 

t 

be the average modularity of all the detected layers at step t : 
2 Note that ReduceEdge is also suitable for weighted graph where e kk corresponds to the sum of edge weights inside C k , and d k corresponds to the sum 

of degrees of nodes in C k , weighted by the edge weight. 
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Fig. 3. Change in average modularity when detecting 2, 3, or 4 layers on SynL3. 

 

 

 

 

 

 

 

1. Calculate Q 

0 for t = 0 , i.e. after identification, before any refinement is conducted; 

2. Perform T = 10 tentative iterations of refinement, and calculate Q 

t for each t ∈ { 1 , · · · , T } ; 
3. Calculate the average improvement ratio of modularity per iteration. 

R T = 

∑ T 
t=1 Q t 

T · Q 0 

R T represents how much refinement improves the detected layers. Instead of only considering how much improvement

we get at step T , we use the average modularity of the T steps to balance the fluctuation on real-world networks. If n L is

too high, then when we remove the structure of the extra layers, we will be removing structure that actually belongs to

some earlier layer. This will result in a lower quality partition, such that the refinement stage actually lowers the quality of

the detected layers. Thus, we choose n L corresponding to the peak R T . The details are as shown in Algorithm 2 . 

Algorithm 2 Determine the number of layers. 

Require: graph G = (V, E) , 

base algorithm A base , 

reduce method M Reduce , 

tentative iterations T = 10 as the default, maximum number of layers L max = 8 as the default. 

Ensure: number of layers n L 
1: for n L = 2 : L max do 

2: Run the identification stage of HICODE using A base and M Reduce 

3: Calculate modularity Q 

0 for all initial layers; 

4: Total modularity Q 

sum = Q 

0 ; 

5: for refinement iteration t = 1 : T do 

6: Run the t-th refinement of HICODE using A base and M Reduce ; 

7: Calculate Q 

t for all layers at the current iteration; 

8: Q 

sum = Q 

sum + Q 

t ; 

9: Average improvement ratio on modularity: R L = 

Q sum 

T ·Q 0 ; 

10: return n L with the largest R L ; 

5. Experimental setup 

5.1. Evaluation metric 

Besides NMI , we also define a Jaccard score-based metric to evaluate how well the detected layers resemble the ground

truth communities. Given a set of detected communities D and a set of ground truth communities G, the Jaccard similarity-

based precision, recall, and F 1 score are defined as follows: 

Each detected community D i has its individual Jaccard Precision: 

P (D i ) = max 
G j ∈G 

| G j ∩ D i | 
| G j ∪ D i | . 

The Jaccard Precision P of the set D is defined as the weighted average of P ( D i ) over all detected communities, weighted by

the size of the communities. 
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Table 1 

Statistics for the synthetic datasets containing multiple layers of stochastic 

blockmodels. | C | avg denotes the average community size in different layers. 

Dataset SynL2_200 SynL2 SynL3 

| V | 200 30 0 0 3,0 0 0 

| E | 960 14,446 21,510 

#Layers 2 2 3 

#Communities 5, 4 100, 50 100, 50, 30 

| C | avg 40, 50 30, 60 30, 60, 100 

block probability 0.12, 0.10 0.16, 0.08 0.16, 0.08, 0.05 

Table 2 

The real-world network datasets. 

Source Domain Dataset |V| |E| 

Facebook Social Caltech 769 16,656 

Smith 2970 97,133 

Rice 4087 184,828 

Vassar 3068 119,161 

Wellesley 2970 94,899 

Bucknell 3826 158,864 

Carnegie 6637 249,967 

UIllinois 30,809 1,264,428 

SNAP Social YouTube 31,150 202,130 

Products Amazon 13,288 41,730 

Collaboration DBLP 49,097 170,284 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Each ground truth community G j has its individual Jaccard Recall: 

R (G j ) = max 
D i ∈D 

| G j ∩ D i | 
| G j ∪ D i | . 

The Jaccard Recall R of the set G is defined as the weighted average of R ( G j ) over all ground truth communities, weighted by

the size of these communities. 

We use weighted P and R to give a higher priority to bigger communities. The Jaccard F 1 Score is defined as the harmonic

mean of P and R , i.e. 2 P R/ (P + R ) . 

5.2. Synthetic stochastic blockmodel 

We define a synthetic stochastic blockmodel containing multiple layers of planted communities. Each layer in a network

corresponds to a single stochastic blockmodel that partitions the nodes into roughly equally-sized sets. In each layer, we first

create the appropriate number of community IDs and randomly assign each node to a community, then we produce a G ( n, p )

Erdos-Renyi random graph over each block. We select suitable p -values for the different layers so that they are of different

densities, but roughly equal strengths as measured by modularity. By randomly assigning nodes to communities, we ensure

that the communities in different layers are independent (i.e., a node’s membership in different layers is unrelated). 

Table 1 contains the parameters we have used for generating these synthetic datasets, and describes important structural

characteristics. For instance, for the small network SynL2_200 that will be used to illustrate various details of our algorithm,

there are two layers of communities, containing 5 communities of roughly size 40, and 4 communities of roughly size 50.

The p values that govern the number of intra-community links for these two layers are 0.12 and 0.10. As shown in Table 3

(left column), their modularity scores are 0.40 and 0.39, and we observe a very low NMI of 0.05 between the two layers. We

similarly generate larger synthetic networks SynL2 and SynL3, containing 2 and 3 layers, respectively. As with SynL2_200,

the multiple layers have similar modularity scores, and are dissimilar from one another. 

5.3. Real-world datasets 

We do thorough testing on two groups of real-world networks, as summarized in Table 2 . 

(1) Facebook networks : These networks are portions of the Facebook social network for different universities in the

United States [32] . For each university network, the data have categorical attributes encompassing the gender, major, year

of matriculation, high school, dormitory, status (faculty, student, staff, etc.) and residence (house, dormitory, fraternity, etc.)

of the users. We choose eight representative university networks which express comparatively high modularity scores when

grouping the nodes by at least one of the attributes: Caltech, Smith, Rice, Vassar, Wellesley, Bucknell, Carnegie and UIllinois.
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Table 3 

Statistics of the detected layers found by HC:Mod as compared with the annotated communities. 

Datasets Annotated communities Community layers found by HC:Mod
Annotations (modularity, hiddenness value) NMImax Fmax Favg #Layers Modularity NMImax Fmax Favg

Synthetic
SynL2 200 PL1(0.40, 0.45) PL2(0.39, 0.56) 0.05 0.04 0.04 2 0.40, 0.40 0.00 0.02 0.02
SynL2 PL1(0.49, 0.50) PL2(0.49, 0.50) 0.20 0.04 0.04 2 0.49, 0.49 0.00 0.04 0.04
SynL3 PL1(0.33, 0.59) PL2(0.32, 0.70) PL3(0.32, 0.71) 0.20 0.04 0.03 3 0.33, 0.32, 0.32 0.00 0.04 0.03
Facebook
Caltech Dorm(0.30, 0.08) Year(0.19, 0.84)

81.023.031.0)58.0,80.0(sutatS 2 0.40, 0.25 0.00 0.18 0.18
Smith Dorm(0.23, 0.42) Year(0.23, 0.49) 0.00 0.04 0.04 2 0.51, 0.34 0.03 0.11 0.11
Rice Dorm(0.37, 0.02) Year(0.23, 0.94)

41.062.011.0)19.0,31.0(sutatS 3 0.50, 0.36, 0.34 0.02 0.20 0.13
Vassar Year(0.34, 0.06) Dorm(0.15, 0.98)

81.003.081.0)98.0,31.0(sutatS 3 0.45, 0.32, 0.31 0.04 0.21 0.15
Bucknell Year(0.40, 0.05) Status(0.12, 0.91)

71.013.051.0)89.0,11.0(mroD 3 0.51, 0.37, 0.31 0.05 0.30 0.22
Carnegie Year(0.28, 0.29) Major(0.12, 0.84)

Status(0.11, 0.78) Dorm(0.08, 0.92) 0.07 0.24 0.09 4 0.40, 0.42, 0.34, 0.32 0.06 0.23 0.17
Wellesley Year(0.30, 0.10) Status(0.15, 0.79) 0.15 0.28 0.28 2 0.37, 0.26 0.00 0.15 0.15
UIllinois Year(0.27, 0.24) High school(0.15, 0.82)

30.070.000.0)67.0,41.0(mroD 2 0.45, 0.34 0.04 0.16 0.14
SNAP
YouTube Co-liked CommSetA(0.23, 0.24)

Co-liked CommSetB(0.10, 0.73) 0.03 0.15 0.15 3 0.59, 0.48, 0.33 0.04 0.33 0.23
Amazon Co-purchased CommSetA(0.99, 0.29)

Co-purchased CommSetB(0.47, 0.92) 0.69 0.72 0.72 2 0.99, 0.14 0.55 0.71 0.70
DBLP Co-authorship CommSetA(0.79, 0.13)

Co-authorship CommSetB(0.03, 0.59) 0.53 0.10 0.10 3 0.90, 0.72, 0.56 0.01 0.10 0.09

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(2) SNAP networks : We choose three networks with ground-truth communities collected by SNAP 3 [33] : Youtube, Ama-

zon and DBLP. Youtube indicates friendships among users and the ground truth communities are user-defined groups. Ama-

zon is a product co-purchasing network where co-purchased products are connected by edges, and the ground truth cor-

responds to product categories. DBLP is a co-authorship network and the ground truth corresponds to authors in the same

conferences. For each network, we extract a subnetwork ( For convenience, we still use the same name ) containing all nodes

in the top 50 0 0 ground-truth. For further analysis, we partition the ground-truth communities into several community sets

( CommSet ) based on their hiddenness values. 

More statistics for their ground truth communities are shown in Table 3 (left column): modularity and average hidden-

ness value for each ground truth community layer, as well as the maximum NMI ( NMI max ), maximum and average F 1 scores

( F max and F avg ) for pairwise layers. 

For Facebook networks, each layer gives rise to a set of communities grouped by a common attribute (i.e., nodes with

a common annotation are in the same community), and we call each such set of communities an annotated layer (e.g.,

the ‘Dorm’ annotation gives rise to one annotated layer). These annotated layers cover all nodes ( cov erage = 100% ) in the

corresponding networks. 

For SNAP networks, we manually divide the ground-truth communities into two sets, namely CommSet A or CommSet B ,

depending on whether the hiddenness value is less than 0.5 or not. The coverage ratio ( ratio of nodes covered by the com-

munities ) of CommSet A in Amazon, DBLP and Youtube are 100%%, 100%% and 80%%. So CommSet A forms a layer for Amazon

and DBLP respectively, but it only covers 80%% of the nodes in Youtube. The coverage ratio of CommSet B on the three net-

works are 46%%, 4%% and 46%% respectively. CommSet A and CommSet B contain very different communities for DBLP and

Youtube. But on Amazon, CommSet A and CommSet B contain very similar communities since their pairwise NMI and F 1 are

very high, indicating that if an algorithm accurately detects most communities in CommSet A , then this algorithm also has a

high detection accuracy on CommSet B . 

5.4. Base algorithms and baselines 

We compare HICODE to four popular algorithms in two categories: 

(1) Overlapping detection methods : OSLOM (OS) [6] and Link Communities (LC) [5] . OS uses a fitness function and

joins together small clusters into statistically significant larger clusters. LC is a landmark algorithm that finds communities

by performing hierarchical clustering on the links, which results in overlapping communities of nodes. 
3 http://snap.stanford.edu . 

http://snap.stanford.edu
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Fig. 4. Stacked Recall of all Layers for the reducing methods (left to right: RemoveEdge, ReduceEdge, Reduce Weight). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(2) Disjoint detection methods : Infomap (IM) [3] and Louvain method (Mod) [4] . IM is based on the random walk

technique and minimizes the expected length of a description of information. Mod is a fast method popular for greedy

modularity optimization. 

We also implement HICODE using the four algorithms as the base, denoted as HC:Mod , HC:IM , HC:OS , and HC:LC . 4 

6. Experimental results 

We first evaluate different variants of HICODE on different reducing methods and different base algorithms, and show

that ReduceWeight performs the best in general, HC:Mod and HC:IM show similar performance and they outperform HC:OS ,

HC:LC shows lowest accuracy among the four versions of HICODE . We then illustrate the necessity of the Refinement stage

that the accuracy improves among the iterations. In Sections 6.2 and 6.3 , we show the statistics of the multiple layers

detected by HICODE and compare the detection accuracy with state-of-the-art baselines on real-world networks. Experiments

show that HICODE finds multiple significant, non-redundant community layers. These community layers are of high quality

when evaluated mathematically by the popular modularity metric. Many of the layers are strongly associated with annotated

communities grouped by living residence, year of registration or career position. The weaker layers are masked by the

stronger layers and they are rarely uncovered by existing community detection algorithms. 

6.1. Analysis on HICODE 

6.1.1. Comparison of the reduction methods 

In this section, we first evaluate different reducing methods on each of the versions of HICODE (corresponding to different

base algorithms). Fig. 4 shows the Recall for all layers of communities detected by HC:Mod , HC:IM , HC:OS and HC:LC on

several examples of the Facebook networks: Caltech, Smith, Rice and Vassar. 

In general, ReduceWeight reaches the highest detection accuracy, followed by ReduceEdge and RemoveEdge. Re- 

duceWeight and ReduceEdge provide a more accurate estimation on the background density, while RemoveEdge removes all

intra-community edges and impairs more structure of other layers, especially when communities in different layers overlap

considerably. ReduceWeight deterministically reduces the weight of intra-community edges and outperforms ReduceEdge, 

which randomly removes intra-community edges. To save space, we will present results using ReduceWeight. 
4 HICODE code and synthetic data: https://github.com/KunHe2015/HiCode/ . 

https://github.com/KunHe2015/HiCode/
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Fig. 5. Refinement of layer 1 on SynL2_200. 

Fig. 6. Refinement of layer 2 on SynL2_200. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

For the different versions of HICODE , HC:Mod and HC:IM perform consistently better than HC:OS and HC:LC . We will use

HC:Mod to show the property of HICODE , and then compare our results on the four HICODE implementations with other

algorithms. 

6.1.2. Necessity of the refinement stage 

To show the necessity of the Refinement stage, which gradually separates the community structures mixed together and

strengthens the structure of each layer, we run HC:Mod on the small network SynL2_200 and illustrate its results. 5 

There are two planted layers on SynL2_200, with hiddenness values of 0.45 and 0.56. Figs. 5 and 6 illustrate several

snapshots of the detected two layers during the execution (shown by the adjacency matrix but the node IDs are reordered

for the two layers respectively). In the Identification stage ( t = 0 ), HICODE only roughly identifies the stronger layer 1, and

only roughly identifies the less strong layer 2 after the initial detected layer 1 is weakened. Then during the Refinement

stage, by iteratively weakening the other community layers, we get a more accurate current layer, which forms a positive

feedback cycle. The refinement process converges within 20 steps and the two detected layers remain stable in further

iterations. 

Fig. 7 illustrates the initial two layers of the communities that we detected immediately after the Identification stage as

well as the final output community structure after refinement, where colors represent the planted community each node

belongs to, and positions represent the detected communities. At each layer, each community is initially mixed with nodes

from other communities, and the communities are purified during the Refinement stage. 

In addition, we also observe that the average modularity scores of the detected layers on the original network are im-

proved by the Refinement stage. As an example, Fig. 8 shows the increasing trend during the iteration when we detect 2, 3,

4 or 5 community layers on four real-world networks. 

6.2. Evaluation on synthetic networks 

To demonstrate the ability of HICODE in finding multiple layers of community structures, we first examine the two syn-

thetic networks SynL2 and SynL3, and find that HICODE substantially outperform the baseline algorithms, especially for

networks with no less than 3 layers. For instance, Table 4 summarizes the results of evaluating how well each algorithm

uncovers the planted layers on SynL3. HICODE finds almost all communities in the three layers, while the baseline algorithms

mainly find some communities of the first layer and the second layer. 

These experiments demonstrate that existing algorithms have difficulty locating communities outside the dominant layer,

even if the hidden layers of communities have approximately the same modularity score compared with the dominant

layer; however, by removing the effects of dominant community layers, HICODE is able to achieve much higher scores than

competing methods. 

6.3. Evaluation on real-world networks 

For real-world networks from various domains, HICODE uncovers multiple layers of high modularity community structure.

Table 3 (right column) shows the statistics of the layers found by HC:Mod in each network. When comparing these layers to
5 The other base algorithms produce similar results. 
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Fig. 7. Initial and final output on SynL2_200. 

Fig. 8. Improvement on Modularity of the detected layers. 

 

 

 

 

 

 

 

 

 

 

 

 

one another, their maximum pairwise NMI, maximum and average pairwise F 1 scores are low, indicating that these layers

of communities are distinct. One exception is Amazon, which seems only to contain one layer of very strong community

structure. 

When comparing the ground truth layers on the Facebook networks, we see the layers found by HICODE are strongly

associated with the community categories. Tables 5 and 6 show the F 1 and NMI scores of HICODE and the baseline algorithms

evaluated against different annotation categories on several examples: Caltech, Smith, Rice and Vassar. We see that: 

(1) All baseline algorithms primarily locate the dominant structure, and rarely detect the hidden, weaker structures.

Interestingly, different to other algorithms, LC regards Status and Year as the dominant on Vassar and Smith respectively.

This occurs as LC may have a different notion of community structure. 

(2) All HICODE implementations return community layers that are strongly associated with each ground truth category.

HICODE not only uncovers the hidden layers that the baseline algorithms rarely detect, but also improves the detection

accuracy on the dominant layer. 

For each CommSet of the SNAP networks, we calculate the Recall of AllLayers (the union of all layers found by HICODE )

and the Recall of the communities detected by each of the baselines. In Table 7 , we see that the comparatively hidden

CommSet B is consistently harder to be located than the dominant CommSet A . When compared with the baselines, HICODE

not only has higher detection accuracy on the comparatively hidden CommSet , but also boost the detection accuracy on the
B 
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Table 4 

F 1 and NMI scores of all algorithms on SynL3 community categories. PL 1 , PL 2 , and PL 3 are the three layers of planted communities, with PL 1 containing 

small, dense communities and PL 3 containing larger, sparse communities. 

HC:MOD HC:IM HC:OS HC:LC Partitioning Overlapping
SynL3 L1 L2 L3 L1 L2 L3 L1 L2 L3 L1 L2 L3 Mod IM OS LC
PL1 F1 0.93 0.04 0.03 0.99 0.03 0.03 0.05 0.04 0.89 0.67 0.06 0.07 0.44 0.88 0.58 0.56
HV = 0.59 NMI 0.93 0.00 0.00 0.94 0.00 0.00 0.01 0.00 0.82 0.43 0.00 0.00 0.14 0.72 0.50 0.19
PL2 F1 0.04 0.99 0.04 0.03 0.98 0.03 0.94 0.03 0.04 0.05 0.41 0.10 0.11 0.09 0.45 0.20
HV = 0.70 NMI 0.00 0.96 0.00 0.00 0.93 0.00 0.87 0.00 0.00 0.00 0.11 0.00 0.00 0.00 0.29 0.00
PL3 F1 0.03 0.04 0.98 0.03 0.03 0.98 0.04 0.95 0.04 0.05 0.07 0.28 0.12 0.08 0.25 0.12
HV = 0.71 NMI 0.00 0.00 0.95 0.00 0.00 0.85 0.00 0.87 0.00 0.00 0.00 0.11 0.00 0.00 0.06 0.00

Table 5 

F 1 and NMI scores of all algorithms on Caltech, Smith community categories. 

HC:MOD HC:IM HC:OS HC:LC Partitioning Overlapping
Caltech L1 L2 L1 L2 L3 L1 L2 L1 L2 Mod IM OS LC
Dorm F1 0.58 0.11 0.65 0.11 0.11 0.48 0.11 0.21 0.10 0.51 0.51 0.49 0.18
HV = 0.08 NMI 0.39 0.00 0.48 0.01 0.01 0.32 0.01 0.16 0.02 0.36 0.42 0.28 0.14
Year F1 0.11 0.60 0.12 0.40 0.20 0.14 0.45 0.07 0.15 0.13 0.14 0.12 0.07
HV = 0.84 NMI 0.00 0.38 0.03 0.19 0.09 0.00 0.29 0.02 0.10 0.05 0.13 0.00 0.03
Status F1 0.17 0.37 0.12 0.38 0.64 0.02 0.36 0.23 0.51 0.16 0.16 0.12 0.03
HV = 0.85 NMI 0.16 0.11 0.15 0.14 0.32 0.00 0.22 0.12 0.25 0.06 0.30 0.19 0.13
Smith L1 L2 L1 L2 – L1 L2 L1 L2 Mod IM OS LC
Dorm F1 0.45 0.04 0.50 0.04 – 0.40 0.07 0.05 0.01 0.25 0.43 0.38 0.04
HV = 0.42 NMI 0.26 0.00 0.36 0.00 – 0.25 0.01 0.01 0.00 0.14 0.31 0.23 0.00
Year F1 0.12 0.56 0.10 0.35 – 0.15 0.24 0.01 0.20 0.21 0.18 0.16 0.18
HV = 0.49 NMI 0.00 0.37 0.03 0.16 – 0.05 0.11 0.00 0.03 0.06 0.06 0.06 0.00

Table 6 

F 1 and NMI scores of all algorithms on Vassar, Rice community categories. 

HC:MOD HC:IM HC:OS HC:LC Partitioning Overlapping
Vassar L1 L2 L3 L1 L2 L3 L1 L2 L3 L1 L2 – Mod IM OS LC
Year F1 0.67 0.16 0.10 0.54 0.17 0.15 0.14 0.44 0.22 0.17 0.08 – 0.68 0.47 0.37 0.16
HV = 0.06 NMI 0.47 0.01 0.00 0.31 0.07 0.02 0.06 0.19 0.06 0.04 0.02 – 0.38 0.27 0.14 0.04
Dorm F1 0.13 0.41 0.08 0.11 0.09 0.25 0.11 0.15 0.11 0.07 0.08 – 0.12 0.12 0.16 0.08
HV = 0.98 NMI 0.03 0.24 0.02 0.02 0.01 0.08 0.01 0.07 0.02 0.02 0.03 – 0.00 0.02 0.00 0.00
Status F1 0.34 0.23 0.12 0.34 0.57 0.19 0.52 0.23 0.61 0.63 0.27 – 0.33 0.33 0.23 0.61
HV = 0.89 NMI 0.15 0.06 0.01 0.10 0.21 0.06 0.20 0.09 0.27 0.04 0.08 – 0.15 0.10 0.07 0.04
Rice L1 L2 L3 L1 L2 L3 L1 L2 L3 L1 L2 L3 Mod IM OS LC
Dorm F1 0.79 0.11 0.07 0.74 0.08 0.08 0.61 0.22 0.22 0.20 0.10 0.07 0.70 0.55 0.54 0.10
HV = 0.02 NMI 0.71 0.00 0.00 0.45 0.00 0.00 0.50 0.10 0.11 0.10 0.01 0.00 0.59 0.32 0.29 0.04
Year F1 0.08 0.22 0.55 0.08 0.20 0.34 0.09 0.22 0.20 0.07 0.14 0.15 0.07 0.08 0.14 0.05
HV = 0.94 NMI 0.00 0.07 0.29 0.00 0.06 0.16 0.00 0.13 0.10 0.01 0.01 0.07 0.05 0.05 0.00 0.00
Status F1 0.11 0.42 0.23 0.10 0.61 0.23 0.13 0.32 0.58 0.05 0.61 0.12 0.10 0.08 0.14 0.03
HV = 0.91 NMI 0.00 0.20 0.11 0.01 0.25 0.09 0.01 0.16 0.42 0.00 0.05 0.02 0.04 0.01 0.00 0.01

Table 7 

Jaccard Recall R of all algorithms on SNAP data. 

Youtube HC:MOD HC:IM HC:OS HC:LC Mod IM OS LC
CommSetA 0.16 0.27 0.30 0.28 0.13 0.04 0.27 0.28
CommSetB 0.10 0.12 0.13 0.13 0.05 0.03 0.08 0.12
Amazon HC:MOD HC:IM HC:OS HC:LC Mod IM OS LC
CommSetA 0.93 0.90 0.90 0.91 0.89 0.88 0.78 0.83
CommSetB 0.90 0.86 0.89 0.88 0.86 0.83 0.82 0.79
DBLP HC:MOD HC:IM HC:OS HC:LC Mod IM OS LC
CommSetA 0.23 0.21 0.29 0.22 0.19 0.19 0.21 0.15
CommSetB 0.11 0.15 0.20 0.24 0.09 0.09 0.14 0.18
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comparatively dominant communities in CommSet A . Again, on Amazon, all algorithms detect both CommSet A and CommSet B 
fairly well due to the highly similarity of the two sets of ground truth communities. 

7. Conclusions 

The hidden community structure concept presented in this paper is useful for understanding and uncovering relation-

ships among communities in complex social networks. This work contributes to the working field and provides a systematic

analysis method to uncover the hidden communities. Experimental results over various domains indicate that some hidden

communities exist in real-world networks, and our proposed HICODE can detect them and performs favourably compared

to existing methods, including overlapping community detection algorithms. As a meta-approach, HICODE is scalable by

applying any conventional community detection algorithm as the base algorithm. 

The framework proposed in this work sheds light on the organization of complex networks and provides new research

methodology for community detection. In the future, we plan to explore the hidden communities on directed or weighted

networks, apply other community detection algorithm as the base, as well as design new reduction method for weakening

the detected communities. It is also possible to apply our ideas for other network mining tasks such as link-prediction or

maximum influence propagation. 
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