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Abstract. When studying dynamic networks, it is often of interest to
understand how the community structure of the network changes. How-
ever, before studying the community structure of dynamic social net-
works, one must first collect appropriate network data. In this paper we
present a network sampling technique to crawl the community structure
of dynamic networks when there is a limitation on the number of nodes
that can be queried. The process begins by obtaining a sample for the
first time step. In subsequent time steps, the crawling process is guided
by community structure discoveries made in the past. Experiments con-
ducted on the proposed approach and certain baseline techniques reveal
the proposed approach has at least 35% performance increase in cases
when the total query budget is fixed over the entire period and at least
8% increase in cases when the query budget is fixed per time step.

1 Introduction

Researchers are interested in a wide variety of problems related to communities
in dynamic social networks, including understanding their growth, dissolution,
and merging behaviors [17, 16, 10]. However, before studying such questions, a
researcher must first obtain an appropriate dataset. Because typical social net-
works may contain millions or billions of nodes, it can be a challenge to collect
adequate data within a reasonable amount of time, due to both the computa-
tional efforts required to collect such data as well as API rate limits imposed by
the companies owning the data. For example, when crawling the Twitter friend-
ship or follower network, the Twitter API allows only 15 queries per 15 minutes
[1]. Given such a scenario, a data collector must make the most of a limited
query budget: which areas of the graph should be explored in order to obtain
information that is most useful for the analysis task at hand? This is a challenge
even in static networks; and the challenge is compounded in dynamic networks,
where individual nodes or edges may appear or disappear, and the structure of
entire regions of the graph may change in a moment.

In this paper, we focus on the problem of crawling a dynamic social network
with the goal of obtaining a sample with community structure that is as repre-
sentative as possible of the true community structure. Here, a community in a
network refers to a group of nodes that are densely connected to each other. In
online social networks, a community can represent a group of likeminded users.
Identifying such users could be used for marketing and recommendations [3].
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Identifying the dynamic community structure in online social networks provides
insights into questions such as: which group is migrating to what group, how
long does it take for a particular group to collapse, when was a particular group
formed, etc.

This paper presents Dynamic Sampler (DYNSAMP) which samples the dy-
namic community structure of online social networks over a period of time when
there are resource constraints. Two resource constraint cases are considered: (1)
The case where there is a limitation on the number of times one can request
information over the entire period considered (e.g., one has a total amount of
money to spend on data collection across the timeline), and (2) The case when
there is a limitation at each time step on the number of times one can request
information about a node (e.g., there is a daily limit on the number of queries
that can be made). DYNSAMP works on the notion that the current community
structure of a graph might be partially or wholly similar to previously discovered
community structures. Experiments show that DYNSAMP has a performance
improvement ranging from 35% to 53% when compared to baseline methods
when the query limitation is considered over the entire period and 8% - 56% in
cases when there is a limitation at each time step.

The rest of the paper is organized as follows. First, we discuss some related
work. In section 3, we present the problem of sampling in dynamic networks. In
section 4, we discuss the proposed approach. Section 5 presents the experiments
performed and its set up. Finally, section 6 presents the conclusion to the paper
and some future directions.

2 Related Work

There has been little work focused on sampling community structure in networks,
and most existing work has focused on static networks.

Maiya and Berger-Wolf [12] proposed an expander graph based sampling ap-
proach for static networks. This method begins with a seed node and increasingly
grows the sample by selecting a node from the neighborhood of the current sam-
ple that maximizes a quality function. Also, in the selection of the next node,
there is an assumption that the neighborhood of all nodes are known which is
not generalizable to most online social networks.

In [5], the authors proposed a link tracing approach for sampling the com-
munity structure of static networks. It begins with a seed node and grows the
sample by selecting the node with the highest reference score, defined as the
ratio of the number of already discovered connections pointing to a node so far
in the crawling process to the degree of the node.

A PageRank-based sampling approach (PRS) proposed by Salehi et al. [14]
obtains samples from a static network with high community structures. From
the simulation results, authors argue PRS has significantly higher performance.
However, PRS assumes it knows the number of communities in the network
which is not realistic with online social networks.

Another link tracing approach (QCA) proposed for dynamic networks is de-
scribed in [13]. This begins with an initial community structure. It computes
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each of the existing communities’ “force” of accepting the node. The community
membership is selected based on the “force”. QCA is able to compute community
membership of discovered nodes. Even though QCA is one of the few techniques
proposed for dynamic networks, it assumes it has an initial community structure
which is not practical in most online social networks.

In [11], Lu et al., proposed two incremental sampling algorithms for dynamic
graphs that preserves some property of interest. Even though it was demon-
strated to be performing well, this approach (1) Makes a similar assumption to
[12] by assuming it knows the entire graph and (2) does not sample for commu-
nities in the network.

In this paper, we propose a crawling based approach to sample the community
structure of dynamic networks with a constraint on the number of times one can
request information about a node without any knowledge of the community
structure.

3 Preliminaries

3.1 Notations

• Gt = (Vt, Et) is a true, unobserved graph at time step t, where Vt and
Et ⊂ Vt × Vt are the set of nodes and edges, respectively, at time step t.
• Gst = (V st , E

s
t ) is a sampled graph at time step t, where V st and Est ⊂ V st ×V st

are the sampled set of nodes and edges respectively at time step t.
• G = {G1, G2, ..., Gn} is the true graph sequence and Gs = {Gs1, Gs2, ..., Gsn}

represents a sampled graph sequence, where Gsi ⊂ Gi.
• ωt represents the community structure similarity metric between Gt and Gst

at time step t.
• qt represents the number of queries used at time step t to obtain Gst .
• qv represents a vector of the number of queries made to obtain Gs. The ith

vector entry is the number of queries made on time step i.
• q represents the total number of queries made to obtain Gs.
• qtmax represents the maximum number of queries allowed at time step t.
• qmax is a the total number of queries allowed over the entire timeline.
• The dynamic community similarity ℵ of a sampled graph Gs and a ground

truth graph G is defined as:

ℵ(G,Gs) =
1

n

n∑
t=1

ωt

• τ is a dissimilarity threshold for which we declare two communities to be
different.

3.2 Problem Formulation

In this work, we assume the true graph sequence G is not known. We also
assume that we can determine whether a node is present in a given timestep at
no cost, as in many online social networks. Example, the Twitter API allows up
to 900 queries per 15 minutes when searching for a user. In each step, a node
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can be queried, and all of its neighbors learned. Assuming the process begins
with a query on v1, the next query can only be made on discovered neighbors
of previously queried nodes (either from the current or previous time steps). For
dynamic networks, we assume there is a storage limitation on how many graphs
can be stored for a period considered. Our goal is to generate a sampled graph
sequence Gs such that ℵ(G,Gs) is maximized.

We consider two different problem settings: (1) The query budget limits the
total number of queries that can be made over the entire timeline (e.g., queries
cost money, and we have a fixed amount of money for the entire sampling pro-
cess). (2) There is a query limit for each timestep (e.g., queries take time, and
each time step has a limited amount of time).

4 Proposed Approach

This work proposes a novel algorithm (DYNSAMP) for sampling a dynamic net-
work such that the community similarity between the true and sampled networks
is maximized. The intuition behind DYNSAMP is that the current snapshot of a
graph may be similar to an earlier snapshot; or if not, portions may be similar.
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Fig. 1: A high level description of the steps involved in the proposed dynamic
network sampling.

DYNSAMP begins by obtaining a sample for the first time step of the sam-
pling process with an allocated number of queries. For subsequent time steps, a
fraction of the budget allocated for that time is used to obtain a graph called
the startup graph. The startup graph is then compared to previously discovered
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graphs to determine if they are similar. If similar, a portion of the budget allo-
cated for that time step is saved for future use. If not similar, the entire allocated
budget for the time step is used. If there is saved budget, it is used to perform
extra queries to grow the graph. Figure 1 shows a high-level view of the pro-
posed approach to sampling dynamic social networks. A detailed description of
the steps involved is described below.

4.1 Initialization

The sampling process requires as input either a total budget q or vector of daily
budgets qv, depending on the problem setting, the number of time steps n con-
sidered, and a dissimilarity threshold τ above which we declare two communities
to be different. If the budget constraint applies to the entire period, for each time
step t, we allocate a basic budget ϕt = %t/nt where %t and nt is the budget and
number of time steps respectively left as at time step t. However, if there is a
limitation for each time step, a basic budget of ϕt = qtmax is defined for each
time step t.

4.2 First time step

For the first time step of sampling, a budget ϕ0 is used to generate a sample by
beginning with a random node, and in each step, with probability p, querying
the node with the maximum observed degree, or with probability 1−p, jumping
to a random node, and storing the observed graph. Our experimental results sug-
gested that this technique works well in comparison to methods such as random
node selection and random walk.

4.3 Startup graph selection

In subsequent time steps after the first time step, a fraction of the basic budget
ηt is used to obtain a startup graph for the time step under consideration. In this
work, a budget of 0.50∗ϕt is used to obtain the startup graph. The nodes queried
are noted and the amount of change in their neighborhood of all previously stored
graphs over the period is computed using Jaccard similarity.

In generating the startup graph, DYNSAMP selects the top ηt queried nodes
with the highest change in neighborhood as at the time under consideration.
This selection process ensures that nodes whose neighborhood have not changed
over a period are not selected often. The selected nodes are queried to obtain
the startup graph. In cases where the number of queried nodes present in the
current time step is less than ηt, a random number of nodes are selected from
the current nodes to add up to ηt.

4.4 Comparing startup graph to previous graphs

Next, the startup graph is compared to all previously obtained graphs to identify
any similarities. In this work, the dissimilarity between two graphs G1 = (V1, E1)
and G2 = (V2, E2) is defined as 1− |E1 ∩ E2|/|E1 ∪ E2|.

In comparing a startup graph and a previously discovered graph, if all nodes
queried in the startup graph are present in the stored graph, only such nodes and
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Algorithm 1: DYNSAMP for sampling the community structure of dy-
namic networks when queries can be saved

1 function DYNSAMP (G, budget, τ , n);
Input : G, budget, τ , n
Output: Gs

2 snaps = n, ϕ1 = budget/snaps, Gs
0 ← getF irstT imeSample(G0, ϕ1) ;

3 Decrement budget, Decrement snaps;
4 Store graph at t = 0;
5 for t = 1 to n do
6 if storage exceeded then
7 groupGraphs()
8 ϕt = budget/snaps,startup = 0.50 ∗ ϕt;
9 Gs

t ← getStartUp(Gt, startup);
10 Gsel ←Find closest stored graph;
11 δ ← graphDissim(Gs

t , Gsel);
12 if δ > τ then
13 use all of base size;
14 Gs

t ← mergeComPart(Gs
t , Gsel) ;

15 if δ > τ then
16 extra = savedqueries;
17 Gs

i ← performExtraQ(Gt, G
s
t , extra);

18 else
19 extra = (0.90 ∗ ϕt)− startup;
20 Gs

t ← merge(Gs
t , Gsel);

21 performExtraQ(Gt, G
s
t , extra);

22 update saved queries;

23 update queried neighbors;
24 Decrement budget, Decrement snaps;

their neighbors are considered. However, if all nodes queried in the startup graph
are not present, a random set of queried nodes in the stored graph are selected
and their neighbors are considered for comparison between the two graphs. The
selection is done such that the number of nodes queried in both graphs are equal.
DYNSAMP selects the stored graph most similar to the startup graph.

4.5 Performing Extra queries

If the startup graph is within τ of the closest graph, the connections in the stored
graph that are between nodes present in the current sample are added to the
initial graph obtained. In this work, an assumption is made that a check can
be made to determine if a node is present or not. The remaining budget is used
to perform some extra queries to grow the graph. If budget is allocated for the
entire duration, a fraction is saved for future use. By performing extra queries
in cases when the graphs are similar, it provides a means of growing the graph
that was previously stored.

In cases where the startup graph is identified to be entirely different from all
previously obtained graphs, the remaining budget is used to grow the network. A
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further check is made if some parts of the startup graph are similar to the closest
stored graph. Each community is merged with its closest community in the stored
graph based on the defined threshold. Communities in this work were obtained
using the Louvain method [6]. In the cases where a budget could be saved,
the saved budget is used to perform additional queries, since the discovered
community structure is deemed wholly new.

4.6 Handling storage limitations

Due to space limitations, it may not be possible to store all previous graphs
especially when sampling for a larger number of time steps. To address this, for
all time steps after the first time step, DYNSAMP checks if the entire storage is
used before the sampling for that particular time begins. The stored graphs are
clustered into groups.

When the storage limit is exceeded, a check is made to determine the number
of unique graphs among all stored graphs. A stored graph is said to be unique
when it is not similar to any of the stored graphs. If among all the stored graphs
there is only one unique stored graph, this means that the graphs stored are
all similar to each other and hence grouped into a single graph. As an example,
assuming Gs1 = (V s1 , E

s
1), Gs2 = (V s2 , E

s
2), ..., Gsm = (V sm, E

s
m) are the currently

stored graphs with a single unique stored graph. A new graph Gsα = (V sα , E
s
α)

such that V sα =
m⋃
i=1

Vi and Esα =
m⋃
i=1

Ei is obtained after the merging process.

If there are k unique stored graphs, where k > 1, an initial attempt is made to
group the graph into k groups. After the grouping into k, if storage is still ex-
ceeded, graphs with the least assessed time are repeatedly considered for eviction
until the storage criteria is met. Algorithm 1 provides a step by step description
of the proposed technique when queries can be saved while algorithm 2 gives the
description of the technique when queries can not be saved.

5 Experiments

This section begins with a description of various real and synthetic datasets used
for the experiment. It is followed with how the experiments were set up and the
main objectives in the various experiments. The section ends with a discussion
of the results of each dataset.

5.1 Datasets

We consider five datasets. These include three real world datasets: Autonomous
Systems (AS-733) [9], Reality Mining (MIT contact)[8] and Enron email (En-
ron) [15]. We also include two synthetic datasets (Syn1 and Syn2), generated
using Dancer [4]. Dancer generates evolving graphs with embedded community
structure.

AS-733 is a communication network constructed from Border Gateway Pro-
tocol logs. It contains 733 daily instances, the largest of which has 6474 nodes
and 12572 edges. Reality Mining is a human contact network among 100 MIT
students. This dataset contains 229 daily instances describing contacts between
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Algorithm 2: DYNSAMP for sampling the community structure of dy-
namic networks when queries can not be saved

1 function DYNSAMP (G, q, τ , n);
Input : G, q, τ , n
Output: Gs

2 Gs
0 ← getF irstT imeSample(G0, q

0
max) ;

3 Store graph at t = 0;
4 for t = 1 to n do
5 if storage exceeded then
6 groupGraphs()
7 startup = 0.50 ∗ qtmax;
8 Gs

t ← getStartUp(Gt, startup);
9 Gsel ←Find closest stored graph;

10 δ ← graphDissim(Gs
t , Gsel);

11 extra = qtmax − startup;
12 if δ > τ then
13 performExtraQ(Gt, G

s
t , extra);

14 Gs
t ← mergeComPart(Gs

t , Gsel) ;

15 else
16 Gs

t ← merge(Gs
t , Gsel);

17 performExtraQ(Gt, G
s
t , extra);

18 update queried neighbors;
19 updated stored graphs;

users, each of which has up to 76 nodes and 418 edges. We aggregate these daily
instances using window sizes of 10 days, with a step of 3, to generate a total
of 77 snapshots. Enron is an email network. We use a dataset containing daily
snapshots during the year 2001, again aggregated as above, for a total of 122
snapshots. These graphs contain up to 7225 nodes and 15938 edges. All networks
exhibit the addition and deletion of both nodes and edges. Some snapshots are
aggregated to ensure all the different community structure behavior are consid-
ered in the experiment.

The synthetic networks both have an initial node count of 2000 initially
grouped into 20 and 24 communities for Syn1 and Syn2 respectively. These go
through different community evolution phases such as splitting and merging. 1

The largest time step of Syn1 has 2293 nodes with 17813 edges. Syn1 over
the period considered shows an addition and deletion of edges. However, it only
demonstrates the addition of nodes over the period. In Syn2, the largest number

1 This model requires a number of parameters. We set k = 20, nBV ertices =
2000, nbT imestamps = 10, prMicro = 0.2, prMerge = 0.4, removeV ertices =
0.4, prSplit = 0.4, prChange = 0.4, addBetweenEdges = 0.2, addV ertices =
0.1, removeBetweenEdges = 0.4, removeWithinEdges = 0.1, updateAttributes =
0.1. For Syn2, the same settings were maintained with modification to the following:
prMicro=0.5, addBetweenEdges=0.5, removeBetweenEdges=0.9, and k=24.
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Fig. 2: A plot of the similarity between community structures over time for three
different group of networks. 2a) is a network with totally stable community
structure, 2b) has a partially stable community structure and 2c) is network
with a completely unstable community structure. Black indicates two graphs
are equal and white indicates they are completely different. These examples
demonstrate stable (Syn1), mixed (MIT), and unstable (Enron) structures.

of nodes over the period is 2859 and the largest number of edges over the period
is 21459. Syn2 tends to have communities splitting or migrating more often than
communities in Syn1.

5.2 Experimental Setup

In our experiments, we set τ = 0.4 and p = 0.80. The budget size in the experi-
ments with a strict budget limitation for each time step is defined to 20% of the
number of nodes at each time step. Budgets for the setting in which we have a
total number of queries for the entire timeline are stated later in this section.

To the best of our knowledge, there is no sampling method that explic-
itly focuses on the community structure of dynamic networks without assuming
knowledge of the entire network. The proposed method is therefore compared
with random walk and breadth-first search baselines.

5.3 Evaluation Metrics

We use two metrics to evaluate DYNSAMP and the baselines above. The first
metric is based on a Jaccard-based metric proposed in [18], modified for evalu-
ating dynamic samples. Given a sampled set of communities Csi and a true set
of communities Ci, this metric finds the closest true community to each sam-
pled community, and vice versa, and averages these similarities. We also use the
popular Normalized Mutual Information (NMI) metric, described in [2, 7].

5.4 Results and Discussion

For each of the datasets, we run DYNSAMP and the baselines 10 times to
generate a dynamic sample with specific budget. We compare to communities
detected on the complete network by the Louvain method [6]. Results for both
evaluation metrics were similar, so we present results for NMI only in Figure 3.

In our experiments, we use budgets of 199000, 850, 13000, 2500 and 2500
respectively for AS-733, MIT-contact, Enron, Syn1 and Syn2. Figure 3 shows a
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Fig. 3: A plot of the NMI between a sampled graph and its corresponding true
graph over time. Shading represents the standard deviation over 10 trials. DYN-
SAMP outperforms the other methods with respect to NMI in most cases. When
graph changes at each time step like 3d), it performs just as baseline methods.

similar plot of the NMI with respect to time (results were similar for the Jaccard-
based evaluation metric). In these experiments, the setting where a budget is
given over the entire period is used. Similarly, Figure 4 shows a similarity plot
of the NMI with respect to time when there is a budget limitation per timestep.

Dynamic social networks can be categorized into three groups based on the
stability of the community structure over the period considered (see Figure 2 for
examples): those that are stable over the entire period (e.g., Syn1), those that
are unstable (e.g., Enron), and those that are mixed (e.g., Reality Mining).

In a dynamic network where there is a complete or partial stability of the
community structures over the period considered, DYNSAMP outperforms base-
line methods substantially. When the community structure changes significantly
at each time step, like the Enron dataset, there is no significant difference be-
tween DYNSAMP and the baselines, because it cannot learn from the past.

We next investigated whether the number of graph samples stored had a
significant impact on the performance of DYNSAMP. The investigation was
divided into two: graphs that have some stability over time (Syn1) and graphs
with no stability over time (Enron). We observe that, in general, the performance
of DYNSAMP is not dependent on the number of graphs being stored. If there
is some stability, it will be merged over time and hence keeping several copies of
them will neither improve or worsen the performance. In cases where there is no
stability, the number of stored graphs has no impact on the learning process.
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Fig. 4: NMI between a sampled and true graphs, with a sample budget for each
time step. Shading represents the standard deviation over 10 trials. DYNSAMP
outperforms the other methods with respect to NMI in most cases.

Overall, we observe that DYNSAMP performs better than baseline methods
in most cases. With the Jaccard based measure, it outperforms RW by 42% and
BFS by 46% on average, and by 35% and 53% as measured by NMI.

6 Conclusion

Sampling provides a means of selecting some parts of the graph such that certain
features of the original graph are preserved. In this paper, we addressed the
problem of sampling a dynamic social network when there is a limitation on the
number of nodes that could be asked for information. We performed experiments
on several real world and synthetic networks. We showed that in most cases
the proposed approach outperforms baseline methods. However, in cases where
the community structure for each time step changes significantly, the algorithm
performs as well as the baseline methods.
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