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Abstract

Social networks play a vital role in the spread of information

through a population, and individuals in networks make

important life decisions on the basis of the information to

which they have access. In many cases, it is important

to evaluate whether information is spreading fairly to all

groups in a network. For instance, are male and female

students equally likely to hear about a new scholarship? In

this paper, we present the information unfairness criterion,

which measures whether information spreads fairly to all

groups in a network. We perform a thorough case study

on the DBLP computer science co-authorship network with

respect to gender. We then propose MaxFair, an algorithm

to add edges to a network to decrease information unfairness,

and evaluate on several real-world network datasets.

1 Introduction

Social networks play a critical role in society, and indi-
viduals in networks often make decisions on the basis
of interactions and communications with other individ-
uals in the network [4]. Access to information flowing
through a network plays a role in many important as-
pects of a person’s life: for example, job-seekers and
students may hear of employment or scholarship oppor-
tunities by ‘networking’, and scientists learn about re-
search ideas through their professional connections.

However, in many social networks, the topology of
the network may be such that various groups (as defined
by demographic features or other sensitive properties)
have unequal access to information. This is of partic-
ular concern when the information of interest has the
potential to affect the life trajectory of an individual,
such as knowledge of employment opportunities. For
example, in professional networks, central positions in a
company (e.g., executive positions) are often occupied
by white men, while women and minorities are on the
fringes [10]. If news of promotion opportunities tends
to flow disproportionately to white men, then this fur-
ther consolidates that group’s power and disadvantages

∗Syracuse University, Syracuse, NY, USA. Email: (zsaghati,

wwang69, susounda@syr.edu)
†Mesh Korea, Korea. Email: (mykim@cs.stanford.edu)
‡LinkedIn, USA. Email: (hraghavan@linkedin.com)

other groups. This has been observed in real settings:
for example, students from poor backgrounds may be
unaware of options for attending selective colleges [3].

It is thus valuable to understand whether infor-
mation flows equally to all groups. We are primarily
interested in groups that are defined by sensitive at-
tributes, such as race or gender. If information does
not flow fairly, then one can take proactive measures
to distribute that information (e.g., by making special
efforts to reach out to the neglected groups).

In this paper, we introduce information unfairness,
which quantifies the extent to which groups in a network
have equal access to information. We perform a case
study on the DBLP co-authorship network, and discuss
the properties that lead to unfairness. Next, we consider
the problem of adding edges to a network to reduce its
information unfairness, and propose MaxFair, a novel
algorithm, for this task. Experimental results show
that MaxFair can obtain large decreases in information
unfairness when adding only a small number of edges.

The major contributions of this paper are as follows:
1. We introduce the novel information unfairness mea-

sure, which describes whether information flows
equally to all groups in a network.

2. We perform a case study on the DBLP co-
authorship network with respect to gender, in
which we compare various subfields to each other.

3. We introduce MaxFair, an algorithm for decreasing
the information unfairness of a network by adding
a small number of edges, and show that it achieves
significant reductions in information unfairness.

2 Related Work

Recently, the topic of algorithmic ‘fairness’ has at-
tracted a great deal of attention [3]. Researchers have
studied problems relating to fairness in algorithms used
in the criminal justice system, hiring, credit scoring,
and many other domains [3]. At a high level, the guid-
ing intuition behind many of these methods is that in-
dividuals should not be treated differently due to their
membership in a protected group. (A protected group is
a group defined on the basis of a protected attribute like
gender: e.g., both the group of men as well as the group
of women are considered ‘protected’. In contrast to the
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Table 1: Notation

Symbol Definition

G(V,E) Unweighted, undirected attributed graph
u, v Nodes in V
n,m Number of nodes and edges in G

M Adjacency matrix of G
p Propagation probability along each edge
k Maximum length cascade considered
S n× n normalization matrix

A,A′ Accessibility & normalized accessibility matrix
c(v) Categorical attribute value of node v
Cf Attribute group

Dfg Joint attribute accessibility distribution

way the term ‘protected group’ is sometimes used collo-
quially, the term does not refer only to underprivileged
groups.) However, these works generally do not view
problems from a network perspective. One exception is
the work by Fish et al. in [8], which studies whether
individuals have fair access to information in social net-
works. This work differs from ours in that they study
access by individuals, not groups.

Our goal with the proposed information unfairness
measure is to allow for evaluation of fairness in net-
work structure, based on the rates of information flow
between different protected groups.

The concepts of homophily and echo chambers are
related to, but substantially different from, information
unfairness. Homophily is a measure of the extent to
which individuals tend to associate with others that are
like them. In networks, it is often measured using the
assortativity coefficient [14]. Homophily has been stud-
ied extensively, and is closely tied to segregation. For
example, both gender and race-based homophily can
be present in professional networks [9]. The negative
side effects of segregation, such as reduced health out-
comes [12] and increased educational inequality [16], are
well-known. Homophily is related to information access:
e.g., Simpson, et al. found that the racial homophily of
African-American communities made it difficult for ad-
vertisers to reach that group [19].

Also tied closely to information unfairness is the
notion of echo chambers, which occur when opinions
‘echo’ within a community, amplifying those beliefs to
members of that community [2]. However, as we will see
in Section 3.7, neither of these concepts fully capture
information unfairness.

In the latter part of this paper, we present a method
for adding edges to a network to decrease its information
unfairness. This is related to the topic of characterizing
and improving flow through a network [20]. D’Angelo
et al. considered the problem of adding b connections
to a network to maximize flow [7]. They showed that
this problem is NP-hard.

3 Information Unfairness: Definitions

Information unfairness measures the extent to which dif-
ferent groups have different levels of exposure to a piece
of information spreading through the network. While it
is unlikely that every individual in a network will partic-
ipate in an information cascade, unfairness may occur if
certain groups are consistently and disproportionately
excluded from access to information. To compute infor-
mation unfairness, a user provides:

1. G = (V,E), an undirected graph with n nodes and
m edges, with specified categorical attributes and
adjacency matrix M. We are interested primarily
in attributes representing sensitive properties of
individuals, such as race.

2. k ∈ N, the maximum length cascade considered.
3. Function Dist(D1, D2) that computes the distance

between two distributions (see Section 3.2).
4. Optional : p ∈ [0, 1], describing the propagation

probability along an edge.1

5. Optional : normalization matrix S of size n×n (see
Section 3.3).
Table 1 lists the notations used in this paper.
The intuition behind the proposed formulation of

information fairness is this: we wish to know whether
different groups benefit differently from the topology of
the graph, in terms of access to information. If, e.g., a
random node in group C1 receives more information (in
expectation) from a random node in group C3 than a
random node in C2 receives from a random node in C3,
then the graph exhibits information unfairness.2

To compute this, we first compute the accessibility
matrix, which uses the topology of the graph to charac-
terize the flow between each pair of nodes. Then, using
attributes, we compute distributions characterizing the
flow between nodes from each pair of groups. Finally,
we calculate the distances between these distributions
in order to identify whether there are differences in flow
levels between nodes from different groups.

In the proposed formulation, high values of infor-
mation unfairness indicate more unfairness. A perfectly
fair network will have an information unfairness of 0.
Step 1: Constructing the Accessibility Matrix.
We first construct the n×n accessibility matrix A. Auv

is the amount of flow that node u is expected to receive
from node v. Because G is undirected, A is symmetric.

To construct A, first note that for adjacency matrix
M, Mi is the number of length-i walks between a pair

1Here, we assume the same propagation probability along each

edge. In Section 3.5, we discuss how one could generalize this.
2Recall that we are primarily interested in groups defined by

protected attributes, regardless of whether they are ‘underprivi-

leged’ (e.g., both the group of men and the group of women are
of interest).
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Figure 1: Overview of information unfairness computation process.

of nodes. By multiplying Mi by pi, we measure the
probability that information is transmitted along a walk
of length i from node u to v, where p represents the
probability of propagation along an edge.3

Thus, if p is specified by the user, we define A =
pM + p2M2 + ... + pkMk. Auv measures the expected
number of times that node v will hear about a cascade
originating at node u, using walks of length up to k [1].
If p is not specified by the user, then A can be found by
integrating the above expression over p ranging from 0
to 1, so A = 1

2M + 1
3M2 + ... + 1

k+1Mk.
This particular cascade model makes finding A

tractable. There are many other cascade models for
cascades, but in general, finding the nodes that are
expected to be influenced by a particular set of seeds
is difficult [21]. However, if a different cascade model is
more appropriate, one can define matrix A accordingly.

If desired, one can normalize A to account for vari-
ous properties of the graph. Normalization is discussed
in more depth in Section 3.3, but the basic idea is that
we wish to compare the observed flow between each pair
of nodes to what we would have expected in a random
graph with some of the same properties as G. Given
a normalization matrix S, the normalized accessibility
matrix A′ is defined as the element-wise quotient of A
with S; that is, A′uv = Auv/Suv. If no normalization
matrix S is provided, then A′ = A.
Step 2: Characterizing Flow Between Groups.
A allows us to characterize flow between pairs of nodes;
but we are interested in understanding how different
groups are affected. Suppose that each v ∈ V has
categorical attribute value c(v) ∈ C = {c1, ..., ct}. Then

3Mi and pi refer to the ith powers of M and p.

we define attribute group Cf = {v : c(v) = cf :
f ∈ {1, .., t}}, and the joint attribute accessibility
distribution Dfg for attribute groups Cf and Cg is
given by {A′uv : c(u) = cf , c(v) = cg, u 6= v} 4 The joint
attribute accessibility distributions characterize how
well information flows between two attribute groups:
each value in Dfg is the flow between a pair of nodes
{(u, v) : u ∈ Cf , v ∈ Cg}.
Step 3: Computing the Information Unfairness
of G. Given the preceding definitions and notation, the
information unfairness IUG,p,k of a graph is given by:

IUG,p,k = max({Dist(Df1g1 , Df2g2) : f1, f2, g1, g2 ∈ {1, .., t}})

Here, Dist is some function to compute the distance
between two distributions. Informally, the information
unfairness of a network measures the extent to which the
joint accessibility distributions differ from one another.
For example, does information originating at a member
of a minority group have the same ‘reach’ as information
originating at a member of the majority group? An
overview of this process is given in Figure 1. For the
sake of simplicity, no normalization is performed.

3.1 Example Figure 2 depicts two graphs with very
different values of information fairness. For p = 0.1, k =
3, for each graph, we compute A = 0.1M + 0.01M2 +
0.001M3. We then identify three distributions charac-
terizing flow between the various group pairs. We take
the values from A to generate distributions character-
izing flow between all red-red node pairs, all blue-blue
node pairs, and all red-blue node pairs. Both networks
have the same number of nodes and edges, so can be

4(We exclude the elements on the diagonal because we are not
interested in whether information flows from a node to itself.).
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Figure 2: The left network has information unfairness of
0.04, while the right network has information unfairness
of 0.1. It is clear that for the right network, very little
information flows between red nodes.

compared directly without normalizing for density.
For the graph on the left, the flow between blue

node pairs, flow between red node pairs, and flow be-
tween red/blue node pairs are all high: the red-red dis-
tribution has a mean of 0.06, the blue-blue distribution
has a mean of 0.06, and the red-blue distribution has
a mean of 0.02. These numbers represent the average
number of cascades that a member of one group will re-
ceive from a member of the other group. The maximum
difference between these means, and thus the informa-
tion unfairness of the network, is 0.06 - 0.02 = 0.04. In
contrast, on the graph on the right, there is good flow
between blue nodes (mean of 0.11), good flow between
red and blue nodes (mean of 0.03), and minimal flow
between red nodes (mean of 0.00). This leads to an
information unfairness of 0.11.5

It is clear that the right network should have much
higher information unfairness than the left network.
While information flows freely between all groups in
the left network, red nodes are on the fringes of the
right network, and are isolated and unable to effectively
communicate with one another.

3.2 Choice of Distance Function In this work, we
define the distance between two distributions as the dis-
tance between their means. Naturally, summarizing a
distribution using its mean can hide important infor-
mation; thus, we also considered the Earth Mover’s Dis-
tance (EMD), but on the networks considered in this pa-
per, we saw similar results. The distance between means
is much faster to calculate, but we recommend that be-
fore selecting a distance function, one should examine
the distributions under question and see whether a more
sophisticated distance calculation (such as EMD) is nec-
essary. (Note that the popular K-L Divergence does not
take the distance between values into account- for ex-
ample, the divergence between [2, 2, 2, ...] and [3, 3, 3,
...] is equal to the divergence between [2, 2, 2, ...] and
[10, 10, 10, ...]- and is thus not a good choice.)

5These raw numbers are only meaningful in relation to one

another; in Sections 3.3 and 3.4, we discuss how to normalize so
that the information unfairness values are interpretable.

3.3 Normalization When computing information
unfairness, the user may choose to provide a normal-
ization matrix S. The goal of such normalization will
generally be to compare the flow between two nodes
in a real network to the flow between those two nodes
that would be expected in a random graph that shares
desired properties with the network being studied. In
such a way, it becomes possible to tease out the specific
topological properties that lead to information unfair-
ness. First, we discuss how to normalize with respect to
random graphs that share the same density as G. Sec-
ond, we show how to normalize with respect to random
graphs that share the same degree distribution as G, al-
lowing us assess the extent to which differences in flow
are due to difference in node degrees.
Density-Based Normalization A drawback in using
the values from accessibility matrix A directly is that
in a dense graph, nodes will naturally receive more cas-
cades than in a sparse graph, and so the unnormalized
information unfairness values will be higher in the dense
graph.

Here, we describe how to normalize so that it is
possible to compare graphs of different densities. Define
matrix Mrand so that each element of Mrand is 2m/n2,
where m represents the number of edges in the graph
and n represents the number of nodes (so 2m/n2 is
simply the density of the graph). Mrand can be thought
of as the average of all adjacency matrices of random
graphs with the same number of nodes and edges as G,
but is produced without actually generating any of those
random graphs. From matrix Mrand, one can generate
random accessibility matrix Arand in the same way that
A was generated from M. Then by defining S = Arand,
each value Auv/A

rand
uv tells us the number of cascades

received by node u from node v, as compared to what
one would expect in a random graph of the same density.
Degree-Based Normalization. In some cases, it may
be useful to understand whether differences in accessi-
bility are due solely to the number of connections (de-
grees) of members of the attribute groups, as opposed
to the positioning of those members within the network.
For example, in a network describing interactions within
the computer science research community, it is possible
that the highest degree individuals are disproportion-
ately men (because high degree individuals are more
likely to be senior researchers, and until fairly recently,
there were many fewer women in computer science).6

We define matrix Mdeg so that each element of
Mdeg is dudv/2m, where du and dv represent the degrees

6We are not making a normative claim about whether or not

information unfairness due to degree differences should be con-
sidered acceptable; we are only seeking to explain the topological

causes of information unfairness.
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of nodes u and v and m represents the number of edges
in the graph.7 Mdeg can be thought of as the average
of the adjacency matrices of random graphs with the
same degree distribution as G (this also normalizes with
respect to density). Then as before, we can define S as
the accessibility matrix obtained from Mdeg.

This normalization tells us the extent to which
the number of cascades transmitted between two nodes
depends on the degrees of those two nodes, as opposed
to their position in the network.

3.4 Interpretation Higher values of information un-
fairness indicate that the network is less fair. The inter-
pretation of an information unfairness value is easiest
when some normalization with respect to a null model
is performed (e.g., the density- or degree-based normal-
izations above). Such normalization allows comparison
of graphs of different sizes, and information unfairness
is not affected by differences in group sizes.

A joint attribute accessibility distribution describes
how well information flows from members of one at-
tribute group to members of the other. If flow be-
tween the groups is high, the values in the distribution
are high; and vice versa. Information unfairness deals
with the distance between the most different pairs of at-
tribute group pairs. For instance, a very segregated net-
work might see good flow within group Cf (i.e., group
Cf to group Cf ), moderate flow within group Cg (i.e.,
group Cg to group Cg), and weak flow between groups
Cf and Cg. The greatest distance occurs when compar-
ing the Cf -Cf flow to the Cf -Cg flow.

When we normalize the accessibility matrix with
respect to some null model (e.g., Mrand and Mdeg), we
divide each value of Auv by the value that we would
have expected in a random graph.8 Thus, value A′uv
in the normalized accessibility matrix tells us the ratio
of the actual amount of flow between u and v, versus
the amount we would have expected in a random graph
with the same high-level properties.

In a fair network, the flow between nodes u and v
need not necessarily be what is expected in a random
graph: what matters is that nodes in each group have
been benefited or harmed by the topology equally. For
instance, if flow between group Cf and group Cg is
50% lower than what one would expect in a random
graph, then in order for the network to be fair, flow

7This is the same normalization that is famously used by the
modularity metric for community quality [15].

8This description is a slight oversimplification. The processes
described construct a single normalization matrix from the aver-
age of random adjacency matrices, as opposed to averaging the

normalization matrices corresponding to all possible random ad-
jacency matrices. The latter method would be preferable, but is
not tractable for large networks.

(a) Graph(a) (b) Graph(b) (c) Graph(c)

Figure 3: Graphs with same echo chamber or assortativ-
ity values, but different information unfairness scores.

between groups Cg and Ch should also be 50% lower
than expected. The distance between two distributions
can thus be viewed as being relative to the null model.

3.5 Variations on Information Unfairness It is
easy to modify information unfairness for other settings.

Directed Graphs: By considering two versions of
information unfairness- transmitter unfairness and re-
ceiver unfairness- we can generalize information unfair-
ness to directed graphs. Depending on the setting, one
or the other of these might be preferable: for example,
a female employee in a professional network might want
to know that her ideas will not be unheard (transmitter
unfairness), while a minority student in a college social
network may want to be confident that he will not miss
out on scholarship opportunities (receiver unfairness).

Thresholded Accessibility Matrix: Elements in A
can be greater than 1, indicating that a node is expected
to receive multiple cascades originating from another
node. In various real-world settings, the number of
cascades from one node to another may be irrelevant:
what matters is the existence of such a cascade. To
account for this, one can truncate the accessibility
matrix by replacing all values greater than 1 with 1.

Varying Edge Propagation Probabilities: In many
social networks, edges may have different values of p,
corresponding, e.g., to different levels of communication.
While it is hard to know these values in practice, if
they are known, it is easy to modify the information
unfairness computation for this case by setting the
elements of adjacency matrix M to these probabilities.

3.6 Measuring Strength of Echo Chambers Al-
though information unfairness is not intended to mea-
sure the strength of echo chambers in a network, it is
possible to use the accessibility matrix to do so. Note
that when computing the accessibility distributions, we
excluded elements from the diagonal of the accessibility
matrix, because we didn’t care about whether a node
transmitted information to itself. However, by averag-
ing these diagonal values, we estimate how information
from a node comes back to that node, thus measuring
the strength of echo chambers in the network.

3.7 Information Unfairness vs. Assortativity
and Echo Chambers The information unfairness of
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Table 2: Dataset statistics

Name Description #nodes #edges Assort Attributes

Parallel-Full Par. Proc. network 14316 44929 0.05 Men (82%), Women (18%)
Graphics-Full Graphics network 12846 38320 0.07 Men (76%), Women (24%)
Security-Full Security network 5135 15089 0.01 Men (79%), Women (21%)
Databases-Full Databases network 17559 69731 0.09 Men (71%), Women (29%)
Data Mining-Full Data mining network 13358 40128 0.08 Men (74%), Women (26%)

Parallel-2015 Par. Proc. network 1251 4356 0.06 Men (82%), Women (18%)
Graphics-2015 Graphics network 3525 10399 0.06 Men (71%), Women (29%)
Security-2015 Security network 1962 5976 0.07 Men (80%), Women (20%)
Databases-2015 Databases network 3185 9386 0.10 Men (68%), Women (32%)
Data Mining-2015 Data mining network 2272 7643 0.08 Men (66%), Women (34%)

Enron Enron e-mail 144 1344 0.03 Men (76%), Women (24%)
Norway Directorate BoD co-serving 1421 3855 -0.15 Men (63%), Women (37%)

a network is related to two other important network
properties: assortativity (a measure of homophily) and
echo chambers. In Figure 3, Graphs (b) and (c) have
the same assortativity (0.66), and Graphs (a) and (b)
have the same echo chamber properties (0.60). However,
Graph (b) has significantly lower information unfairness
(0.19) than the others (0.45 and 0.32 for (a) and (c),
respectively, for p = 0.3 and k = 4).In all graphs,
information flows easily between nodes in the same
group, but it is easier for information to flow from a
blue node to a red node Graph (b).

4 Datasets

We use three categories of datasets, representing differ-
ent professional contexts where access to information is
especially important. First, we examine subfield net-
works from the DBLP computer science co-authorship
network. To identify these subfields, we extract the pa-
pers published in the top three conferences from each
subfield9 in each subfield, using ArnetMiner. We gener-
ate two versions of each subfield: using data from 2000-
2019 (‘Full’), and using data from 2015-2019 (‘2015’).
Second, we study the Enron e-mail network [18]. For
DBLP and Enron, we infer gender from names us-
ing the Genderize.io library. (Previous work has found
that Genderize.io has a fairly high accuracy of around
0.82, though results vary depending on a name’s coun-
try of origin [11].) Third, we use the Norwegian Inter-
locking Directorate datasets (Norway), which includes
gender [17]. Statistics are shown in Table 2.

5 Case Study: Information Unfairness of
Co-Authorship Networks

In recent years, there has been a huge push to increase
the representation of women in Computer Science (CS)

9https://webdocs.cs.ualberta.ca/~zaiane/htmldocs/

ConfRanking.html

and tech fields [6]. Our goal with this case study is to
further investigate gender inequality in the CS collabo-
ration network. We analyze the 2015-2019 DBLP sub-
field co-authorship networks with respect to gender.10

Although these subfields are of different sizes, normal-
ization allows us to compare across datasets. Figure 4
depicts results for k ∈ {2, 6} and p ∈ {0.1, 0.3, 0.5, 0.9}
(results for k ∈ {4, 10} were similar).11

Observation 1: None of the subfields are
perfectly fair. For both types of normalization,
all networks exhibit non-zero information unfairness.
However, the reasons for this unfairness vary. We
explored the results on each subfield in more detail
to determine whether the male-male, female-female,
or male-female flow was lowest. On the Parallel
Processing network, for k = 4, p = 0.5 with density-
based normalization, the male-male, female-male, and
female-female distributions have means, respectively, of
27.0, 10.8, and 7.5. Women in general do not receive
very much information on this network, whether from
men or from other women. On the Graphics network,
with the same parameters, female-female flow is the
highest, with a mean of 4.9. Both male-male and male-
female distributions have a mean close to 3.5. The same
general pattern is observed on Data Mining. On the
Database and Security networks, the male-male and
female-female means are close to each other, but the
male-female flow is the lowest, indicating segregation
between the two groups.

Observation 2: As k and p increase, informa-
tion unfairness tends to increase. This is because
information unfairness uses the total number of cascades
between two nodes. If a network is homophilic, then for

10We restrict to 2015-2019 because we wish to investigate the

current state of the subfields.
11We only consider k up to 10 because long cascades are

uncommon in practice [13].
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(a) Density-normalized results for varying k and p. (b) Degree-normalized results for varying k and p.

Figure 4: Information unfairness results for DBLP subfields. (Dashed lines show information unfairness value
for unspecified p (i.e., when information unfairness is computed by taking the integral over all p ∈ [0, 1]).

very small k, most cascades will be to other members
of the same group; however, as k increases, while cas-
cades are now able to reach members of other groups,
the number of walks within the immediate neighbor-
hood grows exponentially, and so the difference between
two distributions increases.12 For small p, even for large
k, cascades will not become long (e.g., if p = 0.1, the
probability of a length-3 cascade is only 0.001).

Observation 3: In the degree-normalized
case, for sufficiently low k, information unfair-
ness decreases as p increases. For large k, cascades
are able to travel farther from the originating node, and
the local effects of homophily are diminished. As dis-
cussed above, this can only happen for large p. However,
even for large p, this effect is countered by the combina-
torial explosion of cascades (walks) that stay in the local
neighborhood of the originating node. For each network,
we observe some ‘balance point’ between k and p where
cascades can grow long enough to overcome the local ef-
fects of homophily, but are not so long as to encounter
such combinatorial explosion. With such cascades, in-
formation unfairness decreases.

Observation 4: Degree accounts for some,
but rarely all, of the networks’ information un-
fairness. The information unfairness values in Fig-
ure 4b are much lower than those in Figure 4a. For
example, in Figure 4a, with density-based normalization
the Parallel Processing subfield is extremely unfair.
In this network, men and women have mean degrees,
respectively, of 7.0 and 6.3. This difference is by far the
largest of the subfields. With degree-based normaliza-
tion, we see that for low k, this subfield has the lowest
unfairness. This indicates that differences in distribu-
tions are due almost entirely to degree: men receive
more information because they have more connections.

As k increases, Parallel Processing again has high
information unfairness. Further exploration reveals that
this subfield has very high degree assortativity (0.81 vs.

12Information unfairness is not equivalent to homophily; but
homophily largely explains this particular behavior.

-0.012 to 0.029 for the other subfields). Normalizing by
degree removes the effect of a node’s degree, but not
its neighbors’ degrees. In high-degree regions of the
networks, the number of cascades is huge, and so for
larger k, this network has high unfairness.

6 MaxFair: An Algorithm for Reducing
Information Unfairness

In some application domains, it may be possible to add
edges to a network to reduce its information unfairness.
For example, a company may compute the information
unfairness of its e-mail network, and then add key
employees to a mailing list or ensure that they are
invited to meetings with specific individuals to reduce
unfairness. Here, we present MaxFair, an algorithm for
adding b edges to a network to minimize its information
unfairness.

6.1 Problem Statement The user provides an
undirected network G with adjacency matrix M, op-
tional propagation value p, cascade length k, and budget
b. The goal is to output set B of b edges such that the
information unfairness of Gb = (V,E∪B) is minimized.

MaxFair uses the distance function that computes
the difference between the means of the two distribu-
tions. It uses unnormalized information unfairness, be-
cause as long as b is small relative to the total number of
edges, the normalization matrix will not change much.

6.2 Challenges A first challenge is that the problem
of reducing information unfairness is not submodular.
There are cases where no single edge will decrease
information unfairness, but adding multiple edges will
decrease unfairness. Second, estimating the change in
flow when adding b edges to G is difficult in general.
Prior work has characterized the flow through a network
using its spectral properties [5] For example, Tong et
al. consider the related problem of adding edges to a
network to maximize overall flow through the network,
and score each candidate edge (u, v) by the product
of the eigenvector centralities of the endpoints [20].
This method cannot be directly used for our problem,
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Figure 5: Information unfairness results for MaxFair and baseline algorithms.

because we do not seek to increase flow generally, but
only between specific attribute groups.

6.3 Attribute-Based Centrality When estimating
the effect of adding edge (u, v) on flow between attribute
groups Cf and Cg, we must quantify how well nodes u
and v spread information to groups Cf and Cg. If u has
good flow to Cf , and v has good flow to Cg, then adding
edge (u, v) will facilitate flow between the two groups.

To capture this concept, MaxFair performs a power
iteration-type method. Suppose that we wish to create
a vector vecf containing each node’s centrality with
respect to group Cf . First, we initialize vecf,0 so that
the jth element is 1 if j ∈ Cf and 0 otherwise. We
perform k − 1 iterations, where in each iteration j, we
set vecf,j(u) = sum([vecf,j−1(v) : (u, v) ∈ G]). Then
we define vecf = p×vecf,0+p2×vecf,1+...+pk×vecf,k.
If p is not provided, one can integrate over p ∈ [0, 1], as
before. Next, we divide by |Cf | to compute the mean.
Finally, for each node u ∈ Cf , we add 1 to vecf (u)
(because if u ∈ Cf , adding an edge to v increases flow
to Cf , even if u does not subsequently spread to other
members of Cf ). This parallels the computation of the
accessibility matrix, by finding the number of length-i
cascades from u to nodes in Cf , weighted by powers of
p, and summing over i from 1 to k.

6.4 MaxFair Let IUmean(G) represent the informa-
tion unfairness of G using a distance function that com-
putes the means of each joint attribute accessibility dis-
tribution. (p and k remain fixed throughout.)

MaxFair consists of b iterations. Let Gj denote the
graph at the beginning of iteration j (G1 = G). In
iteration j, MaxFair performs the following, using Gj :

1. Compute the attribute-based centrality vector vecf
for each attribute group Cf .

2. Compute the joint attribute accessibility distribu-
tions Dfg for all group pairs Cf and Cg.

3. Compute the mean of each Dfg distribution, and
the mean all mean of the distribution means. Let
sfg = all mean−mean(Dfg).

4. Iterate over all pairs of nodes (u, v) that are not

already connected in Gj . Define score(u, v) =∑
f,g sfg ∗ (vecf (u) ∗ vecg(v) + vecg(u) ∗ vecf (v)).

5. Select the highest scoring edge to add to Gj .

The fourth step is the heart of MaxFair. Here,
edges receive a reward for increasing flow between group
pairs that have below-average flow, and a penalty for
increasing flow between above-average group pairs.

We make two efficiency improvements to MaxFair.
First, instead of recomputing information unfairness in
every step, we recompute every j iterations. Second,
instead of scoring all candidate edges, we prune the
set by finding the top-q% highest scoring nodes with
respect to attribute centrality for each attribute group,
and only consider candidate edges between nodes in
those sets. We discuss the effects of these improvements
in Section 6.6. In our experiments, we set j to be
one-tenth the number of desired edges and q = 25%
(except for the small Enron and Norway networks,
where j = 1, q = 100%).

6.5 Results We evaluate MaxFair on the DBLP-
Full, Enron, and Norway datasets. We com-
pare MaxFair against four baseline algorithms:
InternalDegree is the same as MaxFair, except that
instead of using attribute centrality with respect to
each group Cf , it uses the degree of each node to
Cf . GlobalDegree identifies the Dfg joint attribute
accessibility distribution with the lowest mean, and
then connects the two nodes with the highest product of
degrees from groups Cf and Cg. Random also identifies
the Dfg distribution with the lowest mean, and then
connects a random node from Cf to a random node
from Cg. Centrality connects the node pairs with
the highest eigenvector centrality product. For each
network, we set the budget b to be 1% of the number
of edges in the network. Figure 5 shows results for
p = 0.1, k = 5, but we observed similar results for other
combinations. In all but one case, MaxFair results in
the largest decrease in information unfairness.

6.6 Running Time The major contributors to
MaxFair’s running time are the information unfairness
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Figure 6: MaxFair running time for varying r, q on
Graphics-2015 network.

recalculation and the attribute centrality computation.
We perform experiments in which we recompute infor-
mation unfairness only r times over the course of adding
b edges (as opposed to after each edge addition), for
r ∈ {5, 10, 20, b} (the latter value of r corresponds to
recomputing in each iteration), and we prune to only
consider the top-q% of nodes as scored by attribute cen-
trality, for q ∈ {10%, 25%, 50%, 100%}. Figure 6 shows
results on the Graphics-2015 network. Similar results
were observed in other networks. (Experiments run on
a 2015 MacBook Pro with a 2.8 GHz i7 processor.)

For these values of q, pruning has no effect on
solution quality, and r has a minimal effect on solution
quality (e.g., for r = 5, MaxFair reduces information
unfairness by 61%, and at r = b, it reduces it by 62%).

7 Conclusion

In this work, we introduced information unfairness,
which evaluates whether information flows equally be-
tween all groups in a network. We perform a case study
on the DBLP co-authorship network, in which we com-
pare several subfields of computer science. Next, we
introduced MaxFair, an algorithm to reduce the infor-
mation unfairness of a network by adding a specified
number of edges. We see that MaxFair results in up to
a large reduction in information unfairness.
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