
The k-peak decomposition:
Mapping the global structure of graphs

Priya Govindan
Rutgers University

priyagn@cs.rutgers.edu

Chenghong Wang
Syracuse University

cwang132@syr.edu

Chumeng Xu
Cornell University

cx87@cornell.edu
Hongyu Duan

Syracuse University
hoduan@syr.edu

Sucheta Soundarajan
Syracuse University

susounda@syr.edu

ABSTRACT
The structure of real-world complex networks has long been
an area of interest, and one common way to describe the
structure of a network has been with the k-core decom-
position. The core number of a node can be thought of
as a measure of its centrality and importance, and is used
by applications such as community detection, understand-
ing viral spreads, and detecting fraudsters. However, we
observe that the k-core decomposition suffers from an im-
portant flaw: namely, it is calculated globally, and so if the
network contains distinct regions of different densities, the
sparser among these regions may be neglected.

To resolve this issue, we propose the k-peak graph de-
composition method, based on the k-core algorithm, which
finds the centers of distinct regions in the graph. Our con-
tributions are as follows: (1) We present a novel graph
decomposition- the k-peak decomposition- and correspond-
ing algorithm, and perform a theoretical analysis of its prop-
erties. (2) We describe a new visualization method, the
‘Mountain Plot’, which can be used to better understand
the global structure of a graph. (3) We perform an extensive
empirical analysis of real-world graphs, including technolog-
ical, social, biological, and collaboration graphs, and show
how the k-peak decomposition gives insight into the struc-
tures of these graphs. (4) We demonstrate the advantage
of using the k-peak decomposition in various applications,
including community detection, contagion and identifying
essential proteins.

CCS Concepts
•Mathematics of computing→Graph theory; •Human-
centered computing → Visualization techniques;

Keywords
Graphs; k-core; k-peak; graph visualization

c©2017 International World Wide Web Conference Committee
(IW3C2), published under Creative Commons CC BY 4.0 License.
WWW 2017, April 3–7, 2017, Perth, Australia.
ACM 978-1-4503-4913-0/17/04.
http://dx.doi.org/10.1145/3038912.3052635

.

(a) First mountain of Reed
Facebook network.

(b) Second mountain of Reed
Facebook network.

Figure 1: Mountains (distinct regions) obtained as a result
of k-peak decomposition. The most central (highest peak
number) nodes, peripheral nodes and nodes outside of the
mountain are shown in dark red, in lighter shades of red and
in white, respectively. Pruning the graph by core number
would have found the peripheral nodes of the first mountain
before finding the central nodes of the second mountain.
Note that the second mountain consists of 2 components.
(Best viewed in color.)

1. INTRODUCTION
In recent years, there have been significant efforts to char-

acterize the structure of real-world graphs, which requires an
understanding of both global as well as local structure. It is
thus interesting and useful to characterize the globally cen-
tral parts of the graph as well as the local inter-dependence
of nodes. The k-core graph decomposition has become a
common way to describe the global structure of a graph.
A k-core is the maximal subgraph with minimum degree
k in the subgraph. This decomposition has well-understood
properties [20, 3], and several efficient algorithms have been
proposed for finding it, including algorithms for large graphs
or streaming settings [7, 16, 19]. The k-core decomposition
has achieved widespread success for applications that require
finding a central, well-connected subgraph that, in a sense,
captures the most important structure of the graph.

Weakness of the k-core decomposition: While use-
ful, the k-core decomposition suffers from one important
weakness, illustrated as follows: Suppose that a graph con-
tains distinct and independent regions of different edge den-
sities. In such cases, the k-core decomposition will fail to
find a good global representation of the graph, instead fo-
cusing on the densest of these regions. If one wishes to find



the central regions across the entire graph, the k-core would
not be effective.

For example, consider the Facebook friendship graph of
all the users in the world. In Iceland, 100% of the popula-
tion has Internet access, while in Eritrea, only 1.1% of the
population has Internet access. If one finds the k-core of the
graph for some large value of k, this core will likely capture
the important aspects of the Icelandic region, but none of
the Eritrean region. Naturally, any method that finds a core
or other type of dense subgraph will exclude many nodes,
but the critical observation in this case is that the structure
of the dense region is independent of the structure of the
sparser, excluded region. If one lowers the value of k to cap-
ture the sparser region, too much of the dense region will be
captured, negating the gains obtained by finding the core.
Note that this observation is in contrast to the traditional
notion of a network with strong core-periphery structure, in
which a high k-core, while excluding peripheral nodes, would
capture the essential structure of the entire graph. In this
example, the k-core would be much more informative if one
could set different values of k for different regions.

Moreover, the k-core decomposition does not capture the
local structure in graphs. To understand the local structure,
one might ask the following questions: How does the core
number of a node depend on those of its neighbors? What
are the patterns of inter-dependence between nodes?

The proposed k-peak decomposition: To address
this weakness, we propose the k-peak decomposition. In-
tuitively, the k-peak is similar to the k-core decomposition,
except that different values of k are used in different regions
of the graph. The k-peak decomposition divides the graph
into separate ‘mountains’, each of which represents a differ-
ent region of the graph. Alternatively, one can view the the
k-peak decomposition as a notion of centrality that gives
equal consideration to nodes in sparser regions of the net-
works. For example, Figure 1 shows the two highest moun-
tains in the Reed University Facebook network. Each moun-
tain contains a central region (dark red), as well as nodes
dependent on this region (lighter shades of red). We pro-

pose an efficient algorithm (O((
√
N)(M +N)) running time

for N nodes and M edges) to find this decomposition and
present a novel visualization method that allows one to ob-
tain a global picture of the network’s structure with respect
to the k-peak decomposition.

Additionally, we show how the k-peak decomposition can
be used to gain a nuanced understanding of the relationships
between a node and its region. To illustrate its value, we
perform this decomposition on a multitude of graphs from
different domains. Finally, we show how the k-peak can
replace or supplement the k-core in a variety of applications.

Distinctions from related concepts: The proposed
k-peak decomposition is related to the concepts of commu-
nity structure and core-periphery structure, but differs from
these notions in important ways. A ‘community’ is generally
thought of as a well-connected group of nodes, while a moun-
tain in the k-peak decomposition is a region that may con-
tain multiple communities. A mountain is thus something
coarser than, but also fundamentally different from, a com-
munity, as it lacks the expectation of well-connectedness.

The k-peak decomposition is more closely related to the
notion of core-periphery structure; indeed, the regions found
by this decomposition can sometimes be thought of as core-
periphery structures, and others have observed the presence

of multiple core-periphery structures in a network [18]. How-
ever, the k-peak decomposition and corresponding mountain
plot offer significantly more nuance and insight into graph re-
gions than simply identifying them as core-periphery struc-
tures. In our descriptive study in Section 6, we show how
the mountain plot can be used to identify narrow, ‘column’-
like structures, classical core-periphery structures, as well as
many other patterns.

Our contributions are summarized as follows: (1) We pro-
pose the novel k-peak graph decomposition to under-
stand the global structure of distinct regions within a graph,
and present an efficient algorithm to find it. (2) We per-
form a rigorous theoretical analysis of the properties
of the k-peak decomposition. (3) We create the ‘moun-
tain plot’, a new visualization technique to understand
a graph’s global structure. (4) We use the k-peak decompo-
sition to empirically analyze the structures of 22 diverse
real graphs. (5) We show how the k-peak decomposition can
be used in various k-core-based applications to achieve im-
proved results (e.g., up to an average of 53% improvement
in spreading a contagion through a network).

2. PREVIOUS WORK
The k-core was introduced by Seidman [20] as a concept

to find densely connected subgraphs. Batagelj and Zaver-
snik [3] proposed an in-memory algorithm to compute k-
cores in a graph. The wide interest in the use of k-core de-
composition led to the development of efficient algorithms
in distributed[15], streaming[19] and external memory[7][16]
settings. The well-understood properties of k-core and the
efficient algorithms to compute it have encouraged its use
in solving several problems. The k-core decomposition has
been used in applications such as community detection[17],
improving contagion[11], in choosing nodes for network ex-
periments[21] and finding essential proteins in a protein-
protein interaction network[23]. Liu et al. [13] proposed a
similar modification to the k-core algorithm as our algorithm
but their goal was to perform clustering.

There has been considerable research on studying the k-
core decomposition, its process, and how to generalize it.
The k-core decomposition process has been shown to reveal
an ordering of nodes based on the iteration at which it was
‘peeled’ from the graph[2][9]. There has been considerable
research on generalizing and extending the definition of k-
core to higher structures. A k-truss defined on an edge was
proposed by Cohen [5]. More recently, Sariyuce et al. [6]
further extended the generalization of k-core by defining it
on a subgraph. The goal of all the previous graph decompo-
sitions based on k-cores was to find dense subgraphs, rather
than globally distinct regions. To the best of our knowl-
edge, the graph decomposition presented in this paper is
the first to define and find distinct regions in a graph, that
have properties similar to k-core .

The global structure of a graph as a core-periphery struc-
ture was formalized by Borgatti and Everett [4] as a single
core-periphery component. Rombach et. al[18] extended
the definition to a more general model that allows for multi-
ple core-periphery structures. An alternate model based on
clustering co-efficient was proposed by Holme[8]. Zhang et.
al[24] proposed a stochastic block model based approximate
algorithm to find core-peripheries in graphs. The goal of
these methods is to clearly define a core-periphery structure
and design algorithms to find them. In contrast, the goal



of our work is to reveal distinct regions (mountains) in a
graph, using a known efficient algorithm (k-core). Although
some of the mountains returned by k-peak decomposition
are similar to core-periphery structures, the mountains also
reveal interesting structures quite different from an ideal
core-periphery. Moreover, rather than simply labeling or
quantifying a region as a core-periphery structure, the k-
peak decomposition allows an understanding of the specific
shape and dependencies within that region.

Wang et al [22] presented a visualization technique to
maps dense subgraphs. The mountain plots presented in
this paper are similar to their work with respect to the goal
of plotting groups of nodes in a 2-dimensional plot, with
the nodes ordered on the x-axis. But, our method differs
in both the subgraphs (mountains) found and the ordering
of the nodes in the plot. Specifically, the mountains found,
depend on the k-peak decomposition algorithm and the or-
dering of nodes in a mountain in the plot depends on both
the core and peak numbers. The plotting of both the core
and peak numbers in the mountain plot gives information
about the internal structure of the subgraphs that form the
mountains.

3. K-PEAK DECOMPOSITION
Because the k-peak decomposition is based on the k-core

decomposition, we first provide a review of key k-core defi-
nitions. We then introduce our proposed decomposition and
related concepts.

Recall that our goal behind the k-peak decomposition is
twofold: first, to identify the distinct regions of the network
and second, to obtain a deeper understanding of the rela-
tionships and dependencies between nodes.

3.1 Preliminaries
A k-core is defined as follows:

Definition 1. k-core: Given a graph G, a k-core is a
maximal subgraph Gk−core such that each node in Gk−core

has degree at least k in Gk−core.

The core number of a node is the highest value k such
that the node is a part of a k-core. The k-core decomposi-
tion is the assignment of core numbers to nodes. To find
a k-core, the k-core decomposition algorithm recursively re-
moves nodes with degree less than k. The graph degeneracy
is the highest k such that there exists a k-core in the graph
and the degeneracy core is the corresponding k-core. The set
of all nodes with core number k is the k-shell. Alternatively:

Definition 2. k-shell: Given a graph G, a k-shell is the
induced subgraph over the maximal set of nodes such that (1)
the k-shell does not include nodes from any existing higher
shells (i.e., p-shells where p > k), and (2) each node in the
k-shell has at least k connections to nodes in the k-shell or
higher shells.

Note that the k-core is the induced subgraph of the union
of j-shells for j ≥ k.

3.2 Proposed k-Peak Graph Decomposition
We posit that the global structure of a network can be

viewed as a set of regions, each of which resembles a moun-
tain with a central ‘peak’. Mountains are drawn on topo-
graphical maps, with contours representing different eleva-
tions. Our terminology is based on this analogy.

(a) k-shells and k-cores (b) k-contours and k-peaks

Figure 2: k-core and k-peak decomposition in a toy graph.
The peak number of a node (the k-contour it belongs to) is
at most its core number (the k-shell it belongs to).

First, we define a k-contour in a manner analogously to
the k-shell:

Definition 3. k-contour: Given a graph G, a k-contour
is the induced subgraph over the maximal set of nodes such
that (1) the k-contour does not include nodes from a higher
contour (i.e., a p-contour where p > k), and (2) each node
in the k-contour has at least k connections to other nodes in
the k-contour .

The difference between the k-contour and k-shell defini-
tions is that in a k-shell, we count a node’s connections to
higher shells, whereas in a k-contour, we only count connec-
tions within the same contour.

The definition of a k-contour can be restated as follows:

Definition 4. k-contour: Given a graph G, let d be the
degeneracy of G. A k-contour of G is a maximal induced
subgraph Gk−contour(Vk−contour, Ek−contour) such that

Gk−contour =

{
Gk−core if k = d

(G \
⋃d

j=k+1Gj−contour)k−core if k < d

If the degeneracy of the graph is d, then the d-contour is
equivalent to the d-shell and the d-core is the induced sub-
graph of the d-contour.

The peak number of a node is the value k such that the
node belongs to a k-contour.1

Definition 5. k-peak decomposition: Given a graph
G(V,E), a k-peak decomposition is defined as the assignment
of each node to exactly one k-contour.

See Figure 2 for a toy example. Notice that the peak
number of the two nodes with degree 3 (shown as green
nodes in Fig 2b), is less than their core number.

Similar to the k-core, we define the k-peak as the induced
subgraph of the union of j-contours, where j ≥ k.

Definition 6. k-peak: Given a graph G, a k-peak is the
induced subgraph of the union of j-contours, ∀j ≥ k.

1Note that each node can belong to only one contour.



For a given graph G, the k-core decomposition is unique-
i.e., each node has a single unique core number. In Theo-
rem 1 below, we show that the k-peak decomposition is also
unique- i.e., each node has a single unique peak number.

Theorem 1. Given a graph G and k ∈ Z+, the k-peak is
unique for all k > 0.

Proof. Let d be the degeneracy of graph G. First, con-
sider values of k > d. It is clear that there is no non-empty
k-peak, because if such a k-peak existed, there would be a
non-empty j-contour for some j ≥ k. But then there would
be a set of nodes, each with at least j connections to other
nodes in the set; i.e., a j-core. But we assumed the d-core
was the highest core of the graph. Contradiction, so the
k-peak is empty, and so is unique.

Next, consider k = d. Then the d-core satisfies Defini-
tion 3 of the d-contour: (1) There are no higher contours, so
no node in the d-core belongs to a higher contour, and (2)
By Definition 1 of a k-core, each node in the d-contour has
at least d edges to other nodes in the d-contour. Thus, the
k-peak is simply the d-core, and so is unique.

Finally, consider k < d. Suppose for a contradiction that
there exists some k < d such that the k-contour is not
unique. Select j to be the largest such value, so the j-contour
is not unique but the j + 1-contour and higher contours are
unique. Let S1 and S2, S1 6= S2, be two sets that are both
j-contours. Define S = S1 ∪ S2. Since S1 and S2 satisfy
Definition 3, ∀u ∈ S, u does not belong to a higher contour.
Additionally, u must have at least j neighbors in either S1 or
S2 (depending on which of these two sets it belongs to), and
so it certainly has at least j neighbors in S. Thus, S satisfies
conditions (1) and (2) of Definition 3 of a j-contour. How-
ever, because S is a proper superset of S1 and S2, both S1

and S2 violated the maximality requirement in Definition 3.
This is a contradiction, so the k-contour must be unique.
Thus, the k-peaks are unique for all integers k > 0.

3.3 k-Mountains
Using the k-peaks, one can identify the k-mountains of

the network, each of which can be thought of as a distinct
regions within the larger network.

A k-mountain is defined as follows:

Definition 7. k-mountain: A k-mountain is the in-
duced subgraph of G containing all nodes v ∈ G such that
Ck

v < Ck+1
v , where Ck

v is the core number of node v after the
nodes in the k-peak are removed (if a node itself is removed,
define its core number after removal as 0).

Intuitively, the k-mountain contains the k-contour as well
as nodes whose core numbers are affected by its removal
(after higher contours have been removed). Next, we prove
that for every node in a k-mountain, there is a path from
that node to the k-contour using only other nodes in the
k-mountain. If the k-contour is a connected subgraph, then
the k-mountain is also a connected subgraph. If the k-
contour consists of multiple connected subgraphs, then the
k-mountain may also contain multiple connected subgraphs.

The essence of the following proof is the observation that
if edges are removed from a graph and the core number of
some node changes as a result, then either that node was
directly modified, or its core number changed as a result of
a neighbor’s core number changing.

Theorem 2. Given a graph G, for every node u in a k-
mountain of G, there is a path from u to a node in the k-
contour of G that only uses other nodes in the k-mountain
of G.

Proof. The determination of whether a node belongs to
the k-mountain depends only on its core number after the
k + 1-peak is removed vs. its core number after the k-peak
is removed.

Define H to be the graph after the k+ 1-peak is removed.
If G contains a k-contour, that means that the degeneracy
of H must be equal to k. It thus suffices to consider only H,
and show the theorem for the d-mountain of H, where d is
the degeneracy of H.

Let H ′ be the resulting graph after nodes in the d-contour
(degeneracy core) are removed from H. Define an affected
node to be a node with a lower core number in H ′ than in H
(i.e., a node in the d-mountain). Suppose for a contradiction
that there is some affected node u, but there is no path from
u to the d-contour using only other affected nodes.

Let S be the maximal connected (in H) set of affected
nodes that contains u. Because there is no path along af-
fected nodes from u to the d-contour, and S is connected in
H, then there is no path from any node in S to the degen-
eracy core. S also clearly cannot contain any nodes in the
d-contour itself.

Let T be the set of nodes that are adjacent to a node in S,
but are themselves not in S. Because a node’s core number
cannot increase after the degeneracy core is removed, every
node in T must have the same core number in both H and
H ′, because otherwise S would not be maximal.

Suppose the core number of u in H is ku, and define K
be the ku-core in H. Let Sk = S ∩ K and Tk = T ∩ K.
In H, each node in Sk had at least ku connections to other
nodes in Sk ∪ Tk (because it has at least ku connections to
K, and all of its neighbors are in either S or T ). In H ′, the
nodes in Sk still have at least ku connections to Sk ∪ Tk.
This is because only edges within the degeneracy core were
removed, and we have assumed that S (and thus also Sk)
are disjoint from the degeneracy core. Thus, none of the
edges incident to S were affected.

Let K′ be the ku-core in H ′. K′ ⊆ K since H ′ ⊆ H. Note
that none of the nodes in Sk can be part of K′, because these
are the nodes that had core number ku in H and some lower
core number in H ′. We know that the core numbers of all
nodes in T are unchanged. Hence the core number of the
nodes in Tk is still ku. Thus Tk ⊂ K′. But then Sk ∪K′ is
a ku-core. This is a contradiction, because this means that
K′ was not maximal, and thus was not the ku-core of H ′.
Contradiction, so the claim is proved.

4. COMPUTING THE K-PEAK
DECOMPOSITION

The pseudocode for finding the k-peak decomposition of a
graph G is presented in Section 4.1 and proof of its correct-
ness and analysis of its performance is given in Section 4.2.

4.1 Algorithm
The k-peak decomposition algorithm is shown in Algo-

rithm 1. This algorithm iteratively removes the highest k-
core of the graph and computes the core number of the re-
maining nodes at each iteration. The peak number of a node



is the degeneracy of the graph before the node was removed.
This process is carried on until the graph is empty.

Algorithm 1 k-peak decomposition

Input: The original graph G(V,E)
Output: P {Peak Numbers of nodes}
1: while V 6= ∅ do
2: d-contour ← degeneracy core of G {Via k-core de-

composition of G}
3: ∀u ∈ d-contour, Pu ← d
4: V ← V \ d-contour {Removing d-contour from G}
5: end while

4.2 Theoretical Analysis

Lemma 1. Given graph G(V,E), Algorithm 1 finds the
k-peak decomposition.

Proof. To show the correctness of Algorithm 1, we will
show that it correctly assigns peak numbers to each node.

First consider all nodes u with peak number equal to the
degeneracy d of the input graph G. Each of these nodes u
is in the d-core, which is also the d-shell. Since there is no
k-contour for k > d, by Definition 4, Algorithm 1 correctly
sets the peak numbers of these nodes.

Next consider nodes with peak number less than d. Sup-
pose for a contradiction that for some peak number k < d,
the algorithm does not work correctly (i.e., a node with true
peak number k is assigned an incorrect peak number). Con-
sider the largest such value k, so that the algorithm correctly
assigns peak numbers to all nodes with peak number above
k. Let Gk be the graph remaining after the k+1-peak (which
by our assumption is correct) is removed. Let dk be the de-
generacy of graph Gk. There are two possibilities: k > dk or
k = dk (if k < dk, nodes in the degeneracy core of Gk would
have been removed as part of the k + 1-peak, so would not
be in Gk).

Suppose k > dk. Then no nodes are assigned peak num-
ber k (because the nodes in the degeneracy core of Gk are
assigned peak number dk.). If this is incorrect, then the true
k-contour of G should be non-empty. By Definition 4, the
k-contour is a k-core in Gk. This is a contradiction, because
we assumed that the degeneracy of Gk is less than k.

Now suppose k = dk. After removing the k + 1-peak,
the algorithm finds the degeneracy dk-core of Gk, and these
nodes are assigned a peak number of dk = k. We assumed
that this set is not equal to the true k-contour of G. All
nodes in the true k-contour of G must be contained in Gk,
because otherwise they would belong to a higher contour,
which is assumed to be correct. The true k-contour of G is
a maximal set of nodes inGk that have at least k connections
to one another; but this is simply the k-core of Gk. Thus,
the dk-core of Gk is equal to the k-contour of G. This proves
the correctness of Algorithm 1.

The next two Lemmas discuss the running time and space
requirements of Algorithm 1. Let N and M represent, re-
spectively, the number of nodes and edges in G.

Lemma 2. Algorithm 1 requires O(
√
N(M +N)) time.

Proof. Suppose that a graph has b non-empty k-contours
with peak numbers k = {k1, ...kb}, of sizes s1, ...sb. Suppose

this list of contours is ordered in descending order, so k1 is
equal to the degeneracy of the graph. These ki values must
be unique, non-negative integers.

Because there are b non-empty contours, we must have
k1 ≥ b − 1, so s1 ≥ b (because each node in this contour
has at least b−1 connections within the contour). Similarly,
ki ≥ b − i and si ≥ b − i, for each i. Let N be the number
of nodes in the graph. Then, N = s1 + s2 + ... + sb ≥
b + (b − 1) + ... + 1 = (b)(b + 1)/2 ≥ (b2)/2. Rewriting, we

get b ≤
√

2N , so there are at most
√

2N contours. Finding
each contour requires performing a core decomposition on
the graph, requiring O(N + M) time. Thus, finding the

k-peak decomposition requires O(
√
N(M +N)).

Lemma 3. The algorithm 1 requires O(M +N) space

Proof. Each iteration of the while loop in Algorithm 1
computes a k-contour by computing the k-core decompo-
sition of the current graph. Finding a k-core decomposi-
tion of G requires O(M +N) space, which can be reused in
subsequent iterations. The vector P requires O(N) space.
Thus, the space requirement at any iteration is at most
O(M +N).

Theorem 3. Algorithm 1 returns correctly finds the k-
peak decomposition of a given graph G in O(

√
N(N + M))

time using O(M +N) space.

Proof. From Lemmas 1, 2, 3, thus proved.

5. PROPOSED VISUALIZATION
By using k-peaks, one can gain a deeper understanding

of the network structure. In this section, we present the
mountain plot, a novel visualization technique that uses the
k-peak decomposition to understand both the global and
local structure of the network.

5.1 Mountain Plot
A major motivation behind the k-peak decomposition was

understanding the dependencies between the core numbers
of nodes. An obvious way to visualize these dependencies
would be to plot histograms of the core numbers and peak
numbers of the nodes in a graph G. An example of such a
plot on the FB-Grad network is presented in Figure 3a. As
expected, there are more nodes with higher core numbers
than peak numbers. However, this simple plot suffers from
two major problems: (1) It does not give us information
on individual nodes, and (2) It fails to show the effect the
removal of a k-contour on the rest of the graph.

Our proposed visualization method, the mountain plot,
provides a concise summary of the global peak structure
of the network, depicts how the core and peak numbers of
individual nodes differ, and allows for an understanding of
node dependencies on k-contours.

To generate a mountain plot, we find mountains as in
Section 3.3. Note that these mountains are overlapping.
However, to keep the mountain plot concise, we associate
each node with only one mountain.2 We find k-contours as
in Algorithm 1, where each contour forms the center of a
mountain. We associate each node in the graph with the

2Note that we are not redefining the notion of a mountain,
but are distinguishing between mountains that exist in the
graph structure vs. mountains as they are plotted.



(a) Histogram of core and peak numbers, showing the differ-
ence in distribution of core and peak numbers.

(b) Mountain plot annotated with the core-periphery measure
for each component in each mountain.

Figure 3: Facebook Grad network: The mountain plot gives
more insight than the histogram. The mountains represent
underlying distinct regions of the graph; e.g., the fourth
mountain identified by the 9-contour, has a component with
core-periphery structure (ρ=0.33, see Section 6.2) that is
explained by the many nodes with low peak number (high
dependency) in the mountain.

contour whose removal produced the greatest drop in its
core number: these nodes constitute a plot-mountain. (Note
that a node in the contour itself may not be assigned to
that plot-mountain if it were more affected by an earlier
plot-mountain.) The resulting plot-mountains are thus non-
overlapping.

We sort these plot-mountains in descending order of the
peak numbers of their associated contours. Within each
mountain, we sort the member nodes in descending order
of core number. For nodes with the same core number in a
plot-mountain, we further sort them by their peak-number.
This gives us an ordering of the nodes. On the x-axis of
the mountain plot, we show the nodes in this order. Each
integer along the x axis corresponds to the permuted ID of
a node. We plot the core number of this node in blue, and
the peak number in red. We then draw a line connecting all
blue markers to outline the mountains.

For example, Figure 3b is a mountain plot of the FB-grad
network. This plot shows us that the FB-grad network con-

tains 12 mountains. The highest red markers within each
mountain show the peak number of the contour correspond-
ing to that mountain. The height of the mountain, in blue,
shows the core numbers of the node within the mountain.

5.2 Interpreting a Mountain Plot
The mountain plot can give us the following information:
• The number of mountains in the mountain plot tells

us the number of distinct regions in the graph
• The mountains in the left of the plot represent

the most well-connected regions of the graph. The
mountains towards the right corresponds to the sparser
and more disconnected parts of the graph.
• The height and width, respectively, of a mountain

increase with the core number and the number of nodes
in the mountain. In the graphs that we observed, the
nodes with the highest peak number in a mountain are
those in the k-contour giving rise to the mountain.3

• The difference between the core numbers and
peak numbers in a mountain gives information about
the connectedness and dependencies of the subgraph
represented by a mountain (See Section 6).

From the mountain plot, we can immediately get a sense
of the global structure of the graph.

6. DESCRIPTIVE STUDY
We consider the 22 real graphs listed in Table 1, including

social, co-authorship, email, web, and biological graphs. We
begin in Section 6.1 by discussing structures observed in the
mountain plots. In Section 6.2, we analyze the structures
found in the detected mountains.

The mountains found by the k-peak decomposition some-
times exhibit core-periphery structure [4]; however, the moun-
tain plot allows for substantially more nuance in the way
that we understand these graph regions (i.e., by examin-
ing the shapes of the mountains), rather than simply label-
ing them as core-periphery structures. Depending on the
network structure, the detected regions may not be core-
periphery structures (e.g., as we will see, the CondMat net-
work in Figure 4b with ‘column’ mountains). Additionally,
although in practice the k-peak decomposition sometimes
finds core-periphery-like structures, it is important to note
that this is not its purpose: rather, the goal is to find distinct
regions and understand patterns of node dependencies.

6.1 Mountain Plots of Real Graphs
In Figures 3b and 4, we present a mountain plot for repre-

sentative social, biological, co-authorship, Internet and web
graphs.

We make several observations from the mountain plots.
Number and Sizes of Mountains: First, the num-

ber of mountains identified by the k-peak decomposition
corresponds to the number of distinct regions within the
network, and the width of the mountains in the mountain
plot shows the size of these regions. For example, Fig-
ure 4a shows us that the yeast biological network contains
one large mountain, one medium-sized mountain, and sev-
eral very small mountains. In contrast, Figure 4b shows

3Because we assign each node to the mountain that affected
its core number most, it may be that the nodes in the k-
contour giving rise to the mountain are not actually assigned
to that mountain: however, in practice, this rarely happens,
and mostly for the weaker, less well-connected mountains.



(a) Bio - yeast (b) Co-auth CondMat

(c) Web - google (d) Internet topology

Figure 4: Mountain plots for Protein3, CondMat, and Google Web and Internet topology graphs. Observe the number, shapes,
and sizes of mountains (i.e. regions).

us that the CondMat co-authorship network contains many
medium-sized mountains; but these mountains appear on
the right side of the plot, indicating that they are not asso-
ciated with the highest k-contours. These mountains, while
large, are not as well-connected as the smaller mountains on
the left side of the plot.

Many of the social graphs we consider tend to have a
small number of meaningful mountains. In contrast, the
co-authorship graphs all had the same basic pattern as the
CondMat graph in Fig. 4b: small, well-connected mountains
on the left side, followed by weaker, larger mountains.

Shapes of Mountains: We observe two extreme types
of mountains, with gradations in between: the ‘column’ type
mountains (e.g., at the beginning of Figures 4a, and 4b),
and the ‘wide’ mountains (e.g., the largest mountain in Fig-
ures 4a and 4c). A column mountain is typically formed
of a large clique on which very few other nodes depend for
their core numbers. In contrast, the wide mountains are the
well-formed core-periphery structures, with a small core and
a large, highly-dependent periphery.

Co-authorship graphs, such as in Figure 4b, tend to have
column mountains. These mountains likely correspond to
papers with many authors who tend to work together most
of the time, thus forming a clique that is not well-connected
to the rest of the network. These narrow column moun-
tains very rarely exist in social graphs. Web graphs and

Internet graphs as shown in Figure 4c and 4d, contain sev-
eral mountains that begin with a column, but suddenly ex-
pand into a wide base at the bottom (e.g., the first two
mountains in 4d). These represent tightly-connected struc-
tures on which many low-core-number nodes depend: these
mountains likely represent cliques with low-degree nodes on
the periphery, as opposed to a gradually expanding core-
periphery structure like we see in Figure 4a.

Social networks, as in Figure 3b, tend to have one or two
large, meaningful core-periphery structures, and a collection
of mountains that are closer to column-like. This latter type
of mountain (e.g., the first mountain in Figure 3b represents
a tightly-knit group of individuals with a small number of
additional high-core-number individuals (contrast this with
the Web graph mountains, which are tightly-knit groups
with a large number of additional low-core-number nodes).

By looking at the mountain plot, we get a sense of the
overall connectedness of the network as a whole: does it
contain distinct regions or is it one cohesive structure?

Difference between a node’s core and peak num-
ber: For each node, the mountain plot tells us the difference
between that node’s core number and peak number. This
difference is simply the distance between the appropriate
blue line and red points. This difference tells us the extent
to which a node’s core number is dependent on higher k-
contours: the larger the drop, the more dependent the node



Graph |V | |E| d ρG ρ5 ρ10
B

io

Protein1[1] 1,702 3,155 7 0.06 0.15 0.15
Protein2[1] 2,239 6,432 10 0.03 0.20 0.20
Protein3[10] 5,808 362,421 134 0.09 0.22 0.17

C
o
-a

u
th

GrQC [12] 5,241 14,484 43 0.03 0.24 0.25
HepTH [12] 9,875 25,973 31 0.02 0.25 0.24
HepPH [12] 12,006 118,489 238 0.07 0.29 0.28
AstroPh [12] 17,903 196,972 56 0.03 0.29 0.29
CondMat [12] 23,133 93,439 25 0.02 0.24 0.23

M
sg Digg [1] 30,360 85,155 9 0.03 0.07 0.07

Enron [12] 33,696 180,811 43 0.06 0.16 0.24

S
o
ci

a
l

FB Grad [14] 503 3,256 15 0.05 0.26 0.24
FB Caltech[14] 769 16,656 35 0.14 0.05 0.05
FB Reed [14] 962 18,812 34 0.14 0.10 0.08
FB Ugrad [14] 1,220 43,208 47 0.09 0.05 0.03
FB Baylor [14] 12,803 679,817 96 0.05 0.12 0.10
Brightkite [12] 58,228 214,078 52 0.04 0.27 0.28

T
ec

h Gnutella [12] 26,498 65,359 5 0.01 0.19 0.19
Internet [1] 34,761 107,720 63 0.08 0.18 0.26

W
eb

Foldoc [1] 13,356 91,471 12 0.02 0.02 0.06
Google [1] 15,763 148,585 102 0.06 0.13 0.12
Stanford [12] 281,903 2,312,497 71 0.04 0.28 0.40

Table 1: Statistics of the real graphs, varying in size and
type. Here d is the degeneracy of G and ρG, ρ5 and ρ10 are
the core-periphery measures for G, average of the first 5 and
10 mountains respectively.

is. For example, in the first mountain in Figure 3b, we see
nodes with core numbers 9-13, whose peak numbers dropped
to 3 and 2, due to the removal of the degeneracy core of the
graph. On the other hand, in the fourth mountain, while
there are nodes with low peak number, these nodes tended
to have a low core number to start with: thus, this mountain
contains fewer high-core-number nodes that are highly de-
pendent on the mountain’s k-contour. For another example
across graphs, compare the core and peak numbers of nodes
in the the first mountain in Fig 4d (Internet topology graph)
with that of the second mountain in Fig 4c (web-graph). In
this example, although both mountains have a small tightly-
knit core, the periphery (nodes in the mountain excluding
the nodes in the k-contour) of the web-graph is more depen-
dent on the k-contour for its core number than that in the
Internet topology graph.

6.2 Core-Periphery Structure in a Mountain
Although finding core-periphery structures is not our goal,

it is interesting to measure how well the detected regions
match the ideal core-periphery structure. According to Bor-
gatti and Everett’s formulation, the core-periphery structure
is represented by an idealized adjacency matrix in which
the first r nodes form the core and the remaining s nodes
form the periphery (r + s = N). Every node in the core
is connected to every node in the graph, but nodes in the
periphery are only connected to nodes in the core. To mea-
sure how well a graph exhibits core-periphery structure, one
reorders the adjacency matrix so that the core nodes ap-
pear first, and then measures ρ, the Pearson’s r correlation
between the true adjacency matrix and the idealized adja-
cency matrix (in our mountains, the ‘core’ contains nodes
in the associated contour, while the ‘periphery’ contains ev-
erything else). ρ ∈ [−1, 1], with values above 0 indicating
positive core-periphery structure.

Because the k-peak decomposition is premised on the no-
tion that sparser graph regions can exhibit meaningful struc-
ture, we modify this measure by dividing the values in the
matrix by 2M , so that the sum of (weighted) edges in the
idealized and true adjacency matrices are the same. We
measure significance using a QAP test, by repeatedly ran-
domly permuting the set of nodes in the core and periphery
(while maintaining their sizes), and calculating the correla-
tion between the permuted adjacency matrix and the ideal-
ized adjacency matrix: p is simply the fraction of times that
the permuted adjacency matrix exhibits a greater or equal
correlation than the true adjacency matrix.

The first five mountains in Figure 3b are annotated with
their core-periphery ρ values. Note that the fourth and fifth
mountains consist of two connected components, so two val-
ues are shown. While these values seem low as correlations,
the overall ρ of the entire graph is only 0.05,4 and so the
mountains exhibit much greater core-periphery structure.
These values are significant at the p = 0.01 level.

The average ρ values for the first 5 and first 10 mountains
is given in Table 1 for all graphs. Note that the values
vary substantially by network: although the k-mountains
are almost always more core-periphery-like than the graph
as a whole, some mountains exhibit strong core-periphery
structure (e.g., the first 10 mountains of the Stanford graph),
while others are much weaker (e.g., Google web in Fig. 4c).

7. APPLICATIONS: K-PEAK VS. K-CORE
We now show how the k-peak decomposition can replace

or supplement the k-core decomposition in a variety of appli-
cations: community detection, contagion, and finding essen-
tial proteins in a protein-protein interaction network. Peng,
et al. [17] present a three-step method using k-cores to ac-
celerate community detection that finds communities in a
k-core with ∼ 30% of the nodes, and uses these community
labels to infer community memberships of nodes outside the
k-core. The key intuition behind this process is that the
community memberships of nodes in the k-core are useful in
identifying the community memberships of nodes outside of
the core.

7.1 Accelerating Community Detection
This intuition is not justified in a graph with multiple

distinct regions. We propose that instead of using the k-
core, one should use the k-peak. To motivate this argument,
consider the example Facebook network from Section 1: a
high k-core captures the Icelandic community structure but
not the Eritrean structure, and lower values of k capture too
much of the Icelandic region, negating gains in speed.

To illustrate this, we show results for the Facebook Grad
and Facebook Baylor networks in Fig. 5 (similar results ob-
served in other cases).

We find k-cores and k-peaks containing 10% - 50% of the
nodes in the graph, run the algorithm from [17] on these
cores and peaks, and measure the modularity of the detected
partitionings. When using the k-peak, the algorithm finds a
much better partitioning than when using the k-core.

This application captures the essence of our motivation for
the k-peak: when the graph contains distinct, independent

4To measure the ρ of an entire graph, we consider all values
of k, and set nodes in the k-core to be the ‘core’ and nodes
outside to be the periphery.



(a) Facebook Grad network

(b) Facebook Baylor network

Figure 5: Community detection using k-cores and k-peaks.

regions of different densities, the k-core is less suitable than
the k-peak, which finds the cores of these different regions.

7.2 Locating Essential Proteins
Biological researchers are interested in experimentally iden-

tifying ‘essential’ proteins in protein-protein interaction (PPI)
networks. An essential protein is typically defined as one
that is required for the survival or reproduction of an or-
ganism, as opposed to one that simply increases fitness [25].
Proteins with higher core numbers in this network are more
likely to be essential [23]. Here, we show how peak number
and core number can be used together.

First, we observe that peak number should not be used as
a replacement for core number in this application. Suppose,
for instance, that a PPI network has degeneracy d. Consider
a node that is tightly connected to this core, but only has
core number of d− 1. This node is still part of this central,
well-connected region, and so is likely to be essential, but
has a very low peak number. If we considered peak number
alone, we would overlook nodes like this. However, if one
considers only core number, essential nodes with low core
numbers are excluded. We argue that to better identify
these nodes, peak number is useful.

We consider the Protein3 graph listed in Table 1, a Yeast
PPI network. Over the entire network, essential nodes are
18% of the entire set of nodes, and core numbers range from
1 to 134. Suppose we define a ‘low’ core number to be any-
thing less than or equal to some value t. Identifying essential
low-core-number nodes is necessary to get a complete pic-
ture of essential proteins. For each low core number c ≤ t,
let Rc be the set of nodes with highest peak number within
the set of all nodes with core number c. Let R represent the
union of Rc subsets over all low core numbers c.

At t = 30, R contains 12% of the low-core-number nodes,
but 34% of the essential nodes with low core numbers. Sim-
ilarly, at t = 10, R consists of 8% of the nodes with low core
number, but 22% of the essential nodes; and if t = 20, R
consists of 12% of the nodes, but 28% of the essential nodes.
In other words, by finding nodes with high peak numbers
within a given k-shell, one can improve accuracy.

Effectively, this experiment is identifying nodes that have
low core numbers, but are central within their regions: if
two nodes have the same core number, but one exists in the
periphery of a mountain and the other is in the core of a
mountain, the second is much more likely to be essential.

Infection Probability (b)
p 0.01 0.02 0.05 0.1 0.2 0.5

0.01
0.06
(0.2)

0.04
(0.12)

0.0
(0.03)

0.0
(0.01)

0.0
(0.01)

0.0
(0.0)

0.05
0.12

(0.17)
0.09

(0.14)
0.07
(0.1)

0.04
(0.05)

0.01
(0.02)

0.0
(0.0)

0.1
0.17

(0.28)
0.17

(0.25)
0.11

(0.15)
0.08

(0.09)
0.04

(0.05)
0.01

(0.01)

0.5
0.55

(0.59)
0.53

(0.55)
0.46

(0.47)
0.38

(0.37)
0.27

(0.27)
0.13

(0.14)

Table 2: Average fraction improvement (std. deviation) in
number of infected nodes when initially infected nodes p are
chosen according to peak number vs. core number.

7.3 Identifying Influential Nodes
It is well known that nodes with high core number tend

to be more important in spreading disease or information
through a network. Kitsak, et al. [11] show that in an SIR
contagion, the core number of the initially infected node is
better correlated with the final number of infected nodes
than is the degree of the node.

We show that if multiple nodes are initially infected, se-
lecting nodes with high peak number leads to a larger set of
infected nodes than infecting nodes with high core number.
We perform simulations as follows: Given a network G, we
initially infect p fraction of top core number or top peak
number nodes in G, with infection probability b using a SIR
contagion. As in [11], we set the lifetime of the infection to
be 1 unit of time, and run the simulation until the infection
dies out. For every network listed in Table 1, for a range of
values of p, and b, we perform 100 simulations.

Table 2 shows the average fraction improvement obtained
by using peak numbers instead of core numbers. For exam-
ple, a value of 0.5 would indicate that the contagion begin-
ning at nodes with high peak numbers infected 50% more
nodes than the contagion beginning at nodes with high core
numbers. The standard deviation is sometimes high, but
this variation typically occurs on the upper end: that is,
using peak number almost always outperforms using core
number, but the degree of improvement varies.

In almost all cases, values are positive, indicating that
beginning the contagion at nodes with high peak numbers
infects a greater number of nodes than beginning the conta-
gion at nodes with high core numbers.

8. CONCLUSION
We have proposed the novel k-peak graph decomposition.

We show how the k-peak decomposition can be used to bet-
ter understand the global structure of large networks, and
present an algorithm to efficiently find the decomposition.
Additionally, we introduce a new network visualization plot,
the mountain plot, which depicts the separate regions of the
network. We apply the k-peak decomposition to a variety
of real-world networks, and show how it gives substantially
deeper insight than the k-core decomposition alone. Finally,
we show how the k-peak decomposition can replace the k-
core decomposition in several applications, with large gains
in performance.

Acknowledgments
We would like to thank Chengbin Peng for sharing his com-
munity detection code [17]. This work was supported by
NSF IIS 1447793 and NSF CCF 1535878.



9. REFERENCES
[1] KONECT: The koblenz network collection.

http://konect.uni-koblenz.de/networks, May
2015.

[2] J. Abello and F. Queyroi. Fixed points of graph
peeling. In Advances in Social Networks Analysis and
Mining (ASONAM), 2013 IEEE/ACM International
Conference on, pages 256–263. IEEE, 2013.

[3] V. Batagelj and M. Zaversnik. An O(m) algorithm for
cores decomposition of networks. Advances in Data
Analysis and Classification, 5(2):129–145, 2011.

[4] S. P. Borgatti and M. G. Everett. Social Networks,
pages 375–395, 2000.

[5] J. Cohen. Trusses: Cohesive subgraphs for social
network analysis. 2008.

[6] S. A. Erdem, C. Seshadhri, A. Pinar, and U. V.
Catalyurek. Finding the hierarchy of dense subgraphs
using nucleus decompositions. In WWW, 2015.

[7] P. Govindan, S. Soundarajan, T. Eliassi-Rad, and
C. Faloutsos. Nimblecore: A space-efficient external
memory algorithm for estimating core numbers. In
ASONAM, 2016.

[8] P. Holme. Core-periphery organization of complex
networks. Physical Review E, 72(4):046111, 2005.

[9] J. Jiang, M. Mitzenmacher, and J. Thaler. Parallel
peeling algorithms. ACM Trans. Parallel Comput.,
3(1):7:1–7:27, Aug. 2016.

[10] H. Kim, J. Shin, E. Kim, H. Kim, S. Hwang, J. E.
Shim, and I. Lee. Yeastnet v3: a public database of
data-specific and integrated functional gene networks
for saccharomyces cerevisiae. Nucleic Acids Research,
42:731–736, 2014.

[11] M. Kitsak, L. Gallos, S. Havlin, F. Liljeros,
L. Muchnik, E. Stanley, and H. Makse. Identification
of influential spreaders in complex networks. Nature
Physics, 6(11):888–893, 2010.

[12] J. Leskovec and A. Krevl. SNAP Datasets: Stanford
large network dataset collection.
http://snap.stanford.edu/data, June 2014.

[13] Y. Liu, N. Shah, and D. Koutra. An empirical
comparison of the summarization power of graph
clustering methods. CoRR, 2015.

[14] A. Mislove, B. Viswanath, K. P. Gummadi, and
P. Druschel. You are who you know: Inferring user
profiles in online social networks. In WSDM, pages
251–260, 2010.

[15] A. Montresor, F. D. Pellegrini, and D. Miorandi.
Distributed k-core decomposition. IEEE TPDS,
24(2):288–300, 2013.

[16] M. P. O’Brien and B. D. Sullivan. Locally estimating
core numbers. In ICDM, pages 460–469, 2014.

[17] C. Peng, T. G. Kolda, and A. Pinar. Accelerating
community detection by using k-core subgraphs.
CoRR, abs/1403.2226, 2014.

[18] M. P. Rombach, M. A. Porter, J. H. Fowler, and P. J.
Mucha. Core-periphery structure in networks. SIAM
Journal on Applied Mathematics, pages 167–190, 2014.

[19] A. E. Saŕıyüce, B. Gedik, G. Jacques-Silva, K.-L. Wu,
and U. V. Çatalyürek. Streaming algorithms for k-core
decomposition. PVLDB, 6(6):433–444, 2013.

[20] S. B. Seidman. Network structure and minimum
degree. Social Networks, 5(3):269–287, 1983.

[21] J. Ugander, B. Karrer, L. Backstrom, and J. M.
Kleinberg. Graph cluster randomization: Network
exposure to multiple universes. In KDD, pages
329–337, 2013.

[22] N. Wang, S. Parthasarathy, K. Tan, and A. K. H.
Tung. CSV: visualizing and mining cohesive
subgraphs. In SIGMOD, pages 445–458, 2008.

[23] S. Wuchty and E. Almaas. Peeling the yeast protein
network. Proteomics, 5(2):444–449, 2005.

[24] X. Zhang, T. Martin, and M. E. Newman.
Identification of core-periphery structure in networks.
Physical Review E, 91(3):032803, 2015.

[25] X. Zhang, J. Xu, and W. xin Xiao. A new method for
the discovery of essential proteins. PLoS One, 8(3),
2013.


