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Abstract

Linear programming is required in a wide variety of application including routing, scheduling, and various optimization problems.
The primal-dual interior point (PDIP) method is state-of-the-art algorithm for solving linear programs, and can be decomposed to
matrix-vector multiplication and solving systems of linear equations, both of which can be conducted by the emerging memristor
crossbar technique in O(1) time complexity in the analog domain. This work is the first to apply memristor crossbar for linear pro-
gram solving based on the PDIP method, which has been reformulated for memristor crossbars to compute in the analog domain.
The proposed linear program solver can overcome limitations of memristor crossbars such as supporting only non-negative coef-
ficients, and has been extended for higher scalability. The proposed solver is iterative and achieves O(N) computation complexity
in each iteration. Experimental results demonstrate that reliable performance with high accuracy can be achieved under process
variations.
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1. Introduction

Linear programs are common in a wide variety of appli-
cations, including routing, scheduling, and other optimization
problems. Interior point methods are a popular class of al-
gorithms for solving linear programs. Unlike the well-known
simplex algorithm [1], which traverses vertices of the feasible
region to find the optimal solution, interior point methods trace
a path through the interior of the feasible region. The primal-
dual interior point (PDIP) method uses the gap between the cur-
rent solutions of the primal linear program and its dual in order
to determine the path to follow within the feasible region. In
each iteration, the algorithm involves calculating matrix-vector
product and solving systems of linear equations. The emerg-
ing memristor crossbar technology can be potentially utilized
to achieve significant speed-ups due to its significant benefits in
matrix operations.

Memristor was predicted as the fourth circuit element nearly
half a century ago [2]. It has been investigated for many years
for its switching behavior in memory design field and analog
computing field [3, 4, 5]. Non-volatility, low power consump-
tion, and excellent scalability are some of its promising fea-
tures. More importantly, its capability to record historical resis-
tance makes it unique, and has resulted in heightened interests
over the last several years. A crossbar structure of memristor
devices (i.e. a memristor crossbar) can be utilized to perform
matrix-vector multiplication and solve systems of linear equa-
tions in the analog domain in O(1) time complexity [6][7][8].
Such advantages in matrix operations make it ideal candidate
for implementing the state-of-the-art PDIP method for solving
linear programs given its high usage of matrix-vector multipli-
cation and solving linear systems. Moreover, experimental re-
sults suggest that the effect of process variations of memristor
devices can be significantly mitigated by the inherent noise tol-
erance of the iterative PDIP algorithm.

Although promising, multiple challenges need to be over-
come when applying memristor devices for linear program
solving. Since the memristor crossbar performs matrix oper-
ations in the analog domain, we need to formulate the whole
PDIP algorithm using memristor crossbar in the analog domain
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in order to avoid the significant overhead of D/A and A/D con-
versions. Moreover, some limitations of memristor crossbars
(e.g., only non-negative matrix coefficients and square matrices
when solving a system of linear equations can be supported)
need to be properly addressed.

To the best of our knowledge, this paper provides a com-
prehensive algorithm-hardware framework on memristor cross-
bar for linear program solving. The PDIP method is reformu-
lated for memristor crossbar and analog computations. The pro-
posed solver can effectively deal with matrices containing neg-
ative numbers, and has been extended for linear program solv-
ing with higher scalability that can overcome size limitations of
the memristor crossbar structure. The proposed solver achieves
pseudo-O(N) computation complexity, i.e., O(N) complexity in
each iteration, which is a significant improvement compared
with the software-based PDIP method of O(N3). Experimen-
tal results demonstrate that the performance of proposed imple-
mentation is reliable with less than 4% inaccuracy on average
under 10% process variations. Based on our estimation, the
proposed solver could lead to an average of 80x improvements
in speed and 270x reduction in energy consumption[9].

The rest of this paper is organized as follows: Section 2 de-
scribes the background of linear program solving methods and
memristor devices. Section 3 presents a memristor crossbar
based linear program solver as well as extensions to large-scale
applications. Experimental results and discussions are provided
in Section 4. Finally we conclude in Section 5.

2. Background

2.1. Existing Methods for Linear Programming
The simplex method of Dantzig was the first efficient algo-

rithm for solving linear programming problems, and is still pop-
ular today [10]. The simplex algorithm considers the feasible
region of the linear program (i.e., the space of points satisfy-
ing all constraints), which is a polytope. The algorithm begins
at one vertex of the polytope, and moves from vertex to vertex
in such a way as to increase the value of the objective function.
The simplex algorithm is extremely efficient in practice, but has
exponential running time in the worst case [11].

Interior point methods for solving linear programs were de-
veloped in response to this inefficiency. Unlike the simplex
algorithm, which moves from vertex to vertex of the feasible
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region, interior point methods traverse the interior of this re-
gion. Karmarkars projective method was the first interior point
algorithm that was both polynomial time in the worst case as
well as fast in practice [11]. This method first begins at an inte-
rior point within the feasible region. It next applies a projective
transformation so that the current interior point is the center of
the projective space, and then moves in the direction of steepest
descent. This is repeated until convergence.

The primal-dual interior point method uses the above tech-
nique, but incorporates information from the dual of the prob-
lem. Every linear program has a dual program, with the prop-
erty that when the primal linear program has an optimal so-
lution, the dual linear program also has the same optimal solu-
tion, and these two solutions are equal. The primal-dual interior
point method exploits this property by simultaneously solving
both the primal linear program as well as its dual, and steadily
decreasing the duality gap (i.e., the difference between the value
of the current solution to the primal and the current solution to
the dual).

2.2. Memristor
Introduced as the forth element of circuit by L.O. Chua in

1971, founded by HP labs in 2008[2][3], memristor have shown
its advantage and necessity with its memristive features. A
memristor could memorize its most recent resistance that can
be altered from excitation with voltage greater than a thresh-
old. Given its memristive property, memristor can be used to
design non-volatile memory. Furthermore, memristor crossbar
structure has much advantage for matrix-vector multiplication.

When Maxwell published his famous theory unified electric-
ity and magnetism, it was made clear that each of three funda-
mental circuit elements(capacitor, resistor, inductor) is a con-
sequences of differential relation between two of four circuit
variables(voltage, current, charge, flux). However, these 4 vari-
ables lead to 6 possible combinations. With 3 defined elements,
current being the derivative of charge and flux as the integral of
voltage, Chua noticed that one relation remained undefined. In
1971, Chua proposed a forth element bridging the relation be-
tween charge and flux, for the sake of completeness. The new
element, memristor is defined as:

M (q) =
dΦ

dq
(1)

which is equal to:

M (q (t)) =

dΦ
dt
dq
dt

=
V (t)
I (t)

(2)

The above equation looks like a nonlinear version of ohms law.
It was generalized to memristive systems by Chua in 1976 and
can be written as:

V(t) = M(x, t) · I(t) (3)

where memristance is a time dependent and state dependent
variable. This property of time dependence provides the mem-
ory of the system.

Figure 1: Structure of Memristor Crossbar.

In 2008, HP labs announced that they have developed mem-
ristor based on titanium dioxide thin film and modeled the
newly discovered element as follow:

M(q(t)) = ROFF · (1 − µυ · RON

D2 q(t)) (4)

ROFF represents high resistance state, RON represents low re-
sistance state, D represents film thickness and µυ represents mo-
bility if dopants[12][13][14][15].

2.3. Memristor Crossbar

As mentioned above, the state of a memristor will change
when certain voltage higher than the threshold voltage, i.e.,
|Vm| > |Vth|, is applied at its two terminals for a small time pe-
riod. Otherwise, the memristor behaves like a resistor. Such
memristive property makes it an ideal candidate for non-volatile
memory and matrix computations [6][7].

With its high degree of parallelism, the memristor crossbar
array is attractive for matrix computations (which can often be
performed with O(1) time complexity). A typical structure of
an N × N memristor crossbar is shown in Fig. 1, in which a
memristor is connected between each pair of horizontal word-
line (WL) and vertical bit-line (BL). This structure could pro-
vide large number of signal connections within a small foot-
print. In addition, it is capable of reprogramming each mem-
ristor to different resistance states by properly applying biasing
voltages at its two terminals [16][17][8].

For multiplications, a vector of input voltages VI is applied
on WLs and the current through each BL can be collected by
measuring the voltage across resistor Rs with conductance of
gs. Assume that the memristor at the connection between WLi

and BL j has a conductance of g(i, j). Then the output voltages
are represented by VO = C ·VI, where the connection matrix C
is constructed by a programmed crossbar array, which transfers
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the input vector VI to the output vector VO. C is determined by
the conductance of memristors as follows:

C = D ·GT = diag(d1, . . . , dN) ·


g1,1 . . . g1,N
...

. . .
...

gN,1 . . . gN,N


(5)

where di = 1/(gs +
N∑

k=1
gk,i).

In reverse, the memristor crossbar structure can also be used
to solve a linear system of equations, by mapping the lin-
ear equations to the memristor crossbar structure. A voltage
vector VO is applied on each Rs of BL, so the current flow-
ing through each BL can be approximated as Io, j = gsVo, j.
On the other hand, current Io, j through BL j can also be cal-
culated as Io, j =

∑
j

VI,igi, j. Hence, for each BL j, equation

1
gs

∑
j

VI,igi, j = Vo, j is mapped. Therefore, the system of lin-

ear equations C ·VI = VO is mapped to the memristor crossbar
structure, and solution VI can be determined by measuring volt-
ages on the WLs. Please note that, elements of matrix C should
be non-negative in order to be mapped to memristor crossbar,
because resistance cannot reach negative values. It is worth
mentioning that the matrix calculation process with the mem-
ristor crossbar just has a negligible effect on memristance of
each memristor, because the time period that current go through
a memristor is short enough during the calculation process.

It is proved in [8] that a fast and simple approximation can be
adopted for mapping above matrix onto the memristor crossbar
(gmax is the largest value in G). Therefore for matrix-vector
multiplication Ax = b, and b = gsVO; for the solution of linear
system Ax = b, and x =

gs
gmax

VI.

3. Memristor Crossbar-based Solver for Linear Programs

We present a memristor crossbar based linear program solver
based on the PDIP algorithm, which overcomes hardware lim-
itations of memristor crossbar while taking its advantages on
matrix operations. The presented solver could handle the vastly
used matrix operations in PDIP algorithm efficiently with sig-
nificantly reduced computation complexity (to pseudo-O(N)),
power consumption, and latency. Moreover, the proposed
solver can deal with matrices containing negative numbers that
cannot be directly mapped on to memristor crossbars. In ad-
dition, we introduce an extension for linear program solving
with higher scalability that can overcome size limitations of the
memristor crossbar structure.

This section is organized in five parts: The PDIP algorithm is
discussed in part 3.1; The proposed memristor crossbar-based
linear program solver is introduced in part 3.2; Part 3.3 dis-
cusses writing coefficients in memristor crossbar, and the pro-
posed solutions for representing and computing large-scale ma-
trices are introduced in part 3.4. Part 3.5 investigates computa-
tion complexity of proposed memristor crossbar-based solvers.

3.1. The Primal-Dual Interior Point (PDIP) Method for Solv-
ing Linear Programs

Linear programs or linear programming problems [18] are
problems that can be expressed as:

Maximize cTx subject to: Ax � b(A ∈ Rm×n), x � 0
where Ax � b means that every element in the vector Ax is

smaller than or equal to the corresponding element in vector b.
Every linear program can be converted into a symmetrical dual
problem:

Minimize bTy subject to: ATy � c(A ∈ Rm×n), y � 0
By Introducing two additional variables, inequality con-

straints can be transformed into equality constraints. The above
problem can be reformulated as follows [19]:

Maximize cTx subject to:

Ax + w = b x,w � 0 (6a)

and its dual:
Minimize bTy subject to:

ATy + z = c y, z � 0 (6b)

with complementary conditions:
∀i ∈ N ∩ [1, n] ∧ ∀ j ∈ N ∩ [1,m] : xizi = 0, y jw j = 0
which can be represented using the following matrix nota-

tions:

XZe = 0 ,YWe = 0 (6c)

In the above equation, uppercase notations are utilized to de-
note diagonal matrices, e.g.,

X = diag (x1, . . . , xn) ,
where x = [x1, . . . , xn]T, and the subscript e stands for the

reverse operation, that is
Xe = [X11, . . . , Xii, . . . , Xnn]T.
Due to nonlinearity characteristics in (6c), the above prob-

lem is difficult to solve directly. The interior point algorithm
[18][19] is introduced to solve this problem effectively. In this
algorithm, x, y,w, z are initialized as arbitrary vectors and up-
dated iteratively until Eqns. (6a) (6c) are (sufficiently) satisfied.
In each iteration, a set of vectors ∆x, ∆y, ∆w, ∆z, which are re-
ferred to as step direction vectors, are derived from solving the
following system of equations:

A (x + ∆x) + (w + ∆w) = b (7a)

AT (y + ∆y) − (z + ∆z) = c (7b)

(X + ∆X) (Z + ∆Z)e = µ (7c)

(Y + ∆Y) (W + ∆W)e = µ (7d)

where µ is a small value vector, values of all of its elements
are equal to µ. µ is a important parameter to guarantee that ev-
ery step of iteration does follow the correct path to the optimal
solution. If chosen too large, then the sequence could converge
to the center of feasible region. However, a too small could
force algorithm jam into the boundary of feasible region. It has
been suggested that:

µ = δ
zTx + yTw

n + m
(8)
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where δ is a number between zero and one
Since x, y,w, z are nonnegative vectors, the complementary

conditions in (6c) are replaced with µ-complementary condi-
tions (7c) and (7d). Ignoring the second-order elements in (7c)
and (7d), the above system of equations can be represented as a
system of linear equations of ∆x, ∆y, ∆w, ∆z, denoted by:

A∆x + ∆w = b − Ax − w (9a)

AT∆y − ∆z = c − ATy + z (9b)

Z∆x + X∆z = µ − XZe (9c)

W∆y + Y∆w = µ − YWe (9d)

The unknown vectors ∆x, ∆y, ∆w, ∆z , or step directions, can
be solved from solving the system of linear equations (9a)-(9d)
and applied to update x, y,w, z. For each iteration, x, y,w, z
are updated with step directions determined from solving (9a)-
(9d). In order to guarantee the positive property of every primal
and dual variable, a step length parameter θ is used to limit the
impact of step directions.

x = x + θ∆x (10a)

y = y + θ∆y (10b)

w = w + θ∆w (10c)

z = z + θ∆z (10d)

and θ must satisfy θ ≤ max
i, j

(
−∆x j

x j
, −∆yi

yi
, −∆w j

w j
,−∆z j

z j

)
. In addi-

tion, solution of (5a)-(5d) are determine under the assumption
that the step length direction is equal to one, hence, θ ≤ 1.
Therefore, we have:

θ = r ·min(max
i, j

(
−∆x j

x j
, −∆yi

yi
, −∆w j

w j
,−∆z j

z j

)−1

, 1) (11)

where r , a parameter whose value is less than but close to 1,
is introduced to guarantee strict inequality. Above steps are re-
peated until primal infeasibility (Ax + w− b), dual infeasibility
(ATy − z − c) and duality gap (zTx + yTw) are small enough.
It is proven that unbound dual indicates primal being infeasi-
ble and vice versa, therefore, constraints are infeasible if the
element with the largest absolute value in x, y is greater than
a certain enough large number, such property could applies to
each iteration.

3.2. Memristor Crossbar-based Linear Program Solver Using
PDIP Algorithm

The memristor crossbar array structure has high potential for
implementing PDIP algorithms due to its advantages in ma-
trix operations. However, the memristor crossbar array struc-
ture has some limitations, which necessitate the adjustment of
PDIP algorithm for effective memristor crossbar based imple-
mentations. Since the matrix elements are represented as non-
negative memristance values in the memristor crossbar, a novel
mechanism is required for representing negative matrix coeffi-
cients. In addition, the linear system to be solved should have a

Figure 2: Control flow graph for proposed memristor crossbar-based PDIP lin-
ear program solver.

square coefficients matrix. Next, we propose a memristor cross-
bar based linear program solver using PDIP algorithm through
effectively resolving the above mentioned issues.

For facilitating memristor-based implementations, linear
equations in (9a) (9b) can be rewritten as a linear system with
2(n+m) variables, as shown in (12):



A 0 I 0
0 AT 0 −I
Z 0 0 X
0 W Y 0





∆x
∆y
∆w
∆z


=



b − Ax − w
c − ATy + z
µ − XZe
µ − YWe


(12)

where I represents the identity matrix with diagonal values
equal to 1.

In order to make the matrix representable in memristor cross-
bar structure, new variables have to be introduced to elimi-
nate negative elements. Consider a linear system Ax = b,
in which Ai,j is negative element. It can be transformed into
a non-negative matrix by introducing a compensation variable
xc = −x j. Hence, the above linear system is equivalent to:



A1,1 . . . A1,j . . . A1,n 0

.

.

. . . . . . . . . .

.

.

. 0
Ai,1 . . . 0 . . . Ai,n −Ai,j
.
.
. . . . . . . . . .

.

.

. 0
An,1 . . . An,j . . . An,n 0

0 0 1 0 0 1





x1
.
.
.

xj
.
.
.

xn
xc



=



b1
.
.
.

bj
.
.
.

bn
0



(13)

As shown in Eqn. (12), the matrix on left hand-side con-
sists of a sub-matrix −I introduced by ∆z in Eqn. (7b). A new
variable vector, ∆v = −∆z, has to be introduced. Besides, a
compensation variable vector ∆u = −∆w is required for main-
taining a square matrix. In addition, A and AT are the only ma-
trices that may contain negative elements. Processes like Eqn.
(13) are needed to eliminate all negative elements in A and AT.
Therefore the left hand side of the linear system to be mapped
can be written as:
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

A′ 0 I 0 0 0 0 or A′′

0 AT′ 0 0 0 I 0 or AT′′

Z 0 0 X 0 0 0
0 W Y 0 0 0 0
0 0 I 0 I 0 0
0 0 0 I 0 I 0

0 or AI 0 or ATI 0 0 0 0 0 or I





∆x
∆y
∆w
∆z
∆u
∆v
∆p



(14a)

where ∆p comprises ∆pi ={ −∆x j if Aα, j < 0 for some α
−∆yk if AT

β,k < 0 for some β . A′ and AT′ are ma-

trices that change the negative elements in A and AT to zero.
A′′ and AT′′ are matrices whose elements are the absolute
values of negative elements in A and AT. AI and ATI are
matrices consisting of 1 and 0’s. Locations of 1’s depend on
the locations of negative elements in A and AT (please refer to
Eqn. (13) as an example).

The equation with above left hand size can be denoted as:

M∆s = r (14b)

where M can be implemented and variable vector ∆s can be
derived using memristor crossbar.

In the PDIP algorithm, once ∆x, ∆y, ∆w, ∆z (all in the de-
rived vector ∆s) are derived, we will update x, y, w, z, which can
be performed using summing amplifiers. We will further update
the left-hand side matrix M and the right hand-side vector r of
Eqn. (14b). Updating matrix M is relatively straightforward
since we only need to update X, Y, Z, and W in M, using the
memristor writing technology as shall be discussed in part C.
On the other hand, r can be viewed as the difference of two
vectors:

r =



b − Ax − w
c − ATy + z
µ − XZe
µ − YWe

0
0
0



=



b
c
µ
µ
0
0
0



−



Ax + w
ATy − z

XZe
YWe

0
0
0



(15a)

The subtraction could be implemented using summing am-
plifiers [12]. Next, we will discuss the calculation of the last
vector in Eqn. (14a). Note that

M



x
y
w
z
u
v
p



=



Ax + w
ATy − z

2XZe
2YWe

0
0
0



(15b)

where u = −w, v = −z, and p consists of elements whose
value are negative of some elements of x and y, depending on
the location of negative elements in A and AT. The result of
Eqn. (15b) is only slightly different from the last vector in
Eqn. (15a) on the 3rd and 4th elements. Since the matrix-vector
product in memristor crossbar is represented as voltage, we can

first calculate (15b) by performing matrix-vector multiplication
using the updated memristor crossbar M, and then acquire the
last vector in Eqn. (15a), using a simple dividing-by-2 proce-
dure on corresponding elements. r can be updated accordingly.

Unlike PDIP method under ideal conditions, implementation
using memristor crossbar could suffer from hardware process
variation, which could alter actual resistance of each memristor
(will be explained briefly in chapter 4). In some cases, process
variation could severely affect constraints and feasible region
accordingly. Thus, a more robust feasibility detection technique
is required to guarantee an optimal solution is given. In addi-
tion to primal dual unbound check, a constraints check should
be given to the solution to determine its feasibility. Theoreti-
cally, all optimal solutions should satisfy Ax ≤ b. However,
consider impact form process variation, there is no strict guar-
antee that above equation should stand. Therefore, condition
Ax ≤ αb is used to check constraints satisfaction at the end of
the algorithm, where α is a parameter close but greater than 1.

Our proposed memristor crossbar-based linear program
solver is summarized as follows:

Algorithm 1: Memristor Cross-bar Linear Pram Solver
Input: Matrix M, vectors b, c, constants εb, εc, εg, δ, θ
Output: Vectors x,y,z,w
while Ax + w − b > εb or ATy + z − c > εc or
zTx + yTw > εg do

Update coefficient matrix M in matrix crossbar based
on A, x,y,z,w.
Derive r using memristor cross-bar.
Solve M∆s = r using memristor crossbar.
Update s = s+θ∆s.
Update µ.

end
Return x,y,z,w.

3.3. Writing Coefficients in Matrices
The analog computation requires that memristor arrays (e.g.,

matrix M in (11b)) be programmed prior to execution (solving
linear program), and be updated in each iteration during exe-
cution. Modifying the resistance of a memristor device can be
achieved by applying Vdd or −Vdd (satisfying |Vdd | > |Vth|) to
two terminals of the memristor device [16][17][8]. In a mem-
ristor crossbar, the voltage difference Vdd is applied on the cor-
responding WL and BL that are connected to the target mem-
ristor device, whereas other WLs and BLs are biased by Vdd/2,
which will have negligible effect on other memristor devices
since |Vdd/2| < |Vth| [2][17]. Programming a memristor device
to a specific resistance is achieved by adjusting the amplitude
and width of the write pulse (or the total number of write pulse
spikes) [17][8]. The writing circuits of memristor crossbars and
corresponding controlling circuits will be CMOS based.

3.4. Supporting Large-Scale Matrices in Solving Linear Pro-
grams

A memristor crossbar has limitation on its size due to man-
ufacturing and performance considerations [20], which can po-
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(a)

(b)

Figure 3: NoC Structure for Large Scale Computation.

tentially limit its scalability for large-scale and high-data rate
applications. In order to overcome this shortcoming, motivated
by [20], we adopt analog network-on-chip (NoC) communica-
tion structures that effectively coordinate multiple memristor
crossbars for supporting large-scale applications. Data trans-
fers within this NoC structure maintain analog form and are
managed by the NoC arbiters.

Fig. 3(a) and (b) illustrate two potential analog NoC struc-
tures for multiple memristor crossbars. Fig. 3 (a) is a hierar-
chical structure of memristor crossbars, in which four crossbar
arrays are grouped and controlled by one arbiter, and four such
groups again form a higher-level group controlled by a higher-
level arbiter. Fig. 3 (b) is a mesh network-based structure of
memristor crossbars, which resembles the mesh network-based
NoC structure in multi-core systems [20]. Analog buffer and
switches [21] will be utilized (in the arbiters) for the proper op-
eration of this structure. The controller of NoC structure will
be implemented in CMOS circuits. The NoC structure in Fig. 3
(a) will adopt a centralized controller whereas that in Fig. 3 (b)

could employ a distributed controller similar to mesh network-
based NoC in multi-core systems [20].

In addition to the NoC structure, we also present a memristor-
based linear program solver with enhanced scalability. They
key motivation is to use an iterative process to reduce the re-
quired size of matrix M in (14b), thereby improving scalability.
More specifically, we treat Eqns. (9a)- (9b) as two systems of
linear equations:

[
A 0
0 AT

] [
∆x
∆y

]
=

[
b − Ax − w
c − ATy + z

]
(16a)

[
X 0
0 Y

] [
∆z
∆w

]
=

[
µ − XZe
µ − YWe

]
(16b)

Unlike (14a) which solves all step direction vectors (i.e., ∆x,
∆y, ∆w, ∆z) as one linear system, the proposed iterative algo-
rithm for large-scale operations updates the step directions in
an iterative approach. While updating step directions for vector
x, y, vectors w, z are assumed to be fixed so that we only need to
solve Eqn. (14a) using memristor crossbar. After updating x, y,
we derive the step directions for vectors w, z by solving (14b)
using memristor crossbar.

However, the coefficient matrix in (16a) is singular if A is
not a square matrix, that is, Eqn. (16a) has no solution. In order
to make (16a) solvable, part of the zero elements needs to be
transformed to nonzero elements while causing limited impact
to solution. Hence, following change is made to (16a).

[
A RU

RL AT

] [
∆x
∆y

]
=

[
b − Ax − w
c − ATy + z

]
(16c)

where RU is a matrix whose upper right m by m sub-matrix
is a zero matrix and RL is a matrix whose lower left n by n
sub-matrix is a zero matrix while the values of the rest of their
elements are very small. Above transformation could change
the linear system represented by previous equations, however,
based on our experiments, minor changes infused in coefficient
(e.g. process variation), in very rare cases, could largely affect
the accuracy of final optimal value. Given limited size of in
RU and RL and their small constructing values, impact from
introduction above two balancing matrices is slight.

If n > m, RL is used to replace the submatrix containing
lower left zero elements, and if m > n, RU is used to replace
submatrix containing upper right zero elements. Process alike
Eqn. (9) is still needed after this step; therefore, the left hand
side of Eqn. (16a) is transformed into


A′ RU 0 or A′′
RL AT′ 0 or AT′′

0 or AI 0 or ATI 0 or I




∆x
∆y
∆p

 (16d)

On the other hand, the right hand-side vectors of Eqns. (16a)
and (16b) can be calculated as:
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Figure 4: Control flow graph for proposed memristor crossbar-based linear pro-
gram solver for large-scale operations.


b − Ax − w
c − ATy + z

0

 =


b − w
c + z

0



−


A′ 0 0 or A′′

0 AT′ 0 or AT′′

0 or AI 0 or ATI 0 or I




x
y
p

 (17a)

[
µ − XZe
µ − YWe

]
=

[
µ
µ

]
−

[
X 0
0 Y

] [
z
w

]
(17b)

Updating µ shall still follow eqn. (8). θ, on the other hand,
were found to be better to be constant to guarantee convergence.
Even though a constant θ may not strict restraints primal or dual
solution from being negative in some cases, optimal results can
still approach acceptable accuracy.

Details of the proposed iterative linear program solver for
enhancing scalability are described as below:

3.5. Algorithm Complexity Comparison

Given the fact that iteration-exiting conditions are same in
software-based PDIP algorithm and the proposed memristor
crossbar-based solver, the difference in iteration times is min-
imal. For each iteration step in software-based PDIP algo-
rithm, a set of 2 (n + m) equations needs to be solved. Solv-
ing such linear system could require O

(
N3

)
time complexity

with direct method such as Gaussian Elimination method or
LU-Decomposition, and O

(
N2

)
for each iteration by using it-

erative method such as Gauss-Seidel method (N = n + m).
For the proposed solver, complexity for updating X, Y, W, Z

Algorithm 2: Memristor Crossbar Linear Program Solver
for Large-Scale Operations

Input: Matrix M, vectors b, c, constants εb, εc, εg, δ, θ
Output: Vectors x,y,z,w
Initialize x,y,z,w with an arbitrary guess.
while Ax + w − b > εb or ATy + z − c > εc or
zTx + yTw > εg do

Update coefficient matrix M1 in matrix crossbar based
on A, x,y.
Calculate vector r1 based on M1 and s1 using
memristor crossbar where s1 = [x, y,p]T.
Solve M1∆s1 = r1 using memristor crossbar.
Update s1 = s1+θ∆s1.
Update coefficient matrix M2 in matrix crossbar based
on x,y.
Calculate vector r2 based on M2 and s2 using
memristor crossbar where s2 = [z,w]T.
Solve M2∆s2 = r2 using memristor crossbar.
Update s2 = s2+θ∆s2.
Update µ.

end
Return x,y,z,w.

in matrix M is O (N) (please note that matrices A and AT do
not need updating), and solving linear system in Eqn. (14a)
only costs O (1) time complexity. That is, for each iteration the
complexity for memristor crossbar-based linear program solver
is O (N), while software-based PDIP algorithm could cost at
least pseudo-O

(
N2

)
. As for memristor crossbar-based linear

program solver for large-scale applications, complexity for up-
dating X, Y in matrix Eqn. (16b) is O (N), and complexities for
solving (16a) and (16b) on memristor crossbar are both O (1).
Hence, the time complexity for memristor crossbar-based lin-
ear program solver for large-scale applications is also O (N) for
each iteration step, and the overall time complexity is pseudo-
O (N).

Please note that the above analysis only applies for the iter-
ative solution of linear programs. On the other hand, the ini-
tialization time complexity is O

(
N2

)
for dense matrices, and

will be lower for sparse matrices that are common in linear pro-
grams.

4. Experiments And Analysis

4.1. Hardware Process Variation

Under ideal condition, proposed two implementations shall
provide accurate and optimized solution. However, hardware
process variation could alter actual mem-resistance from desig-
nated mem-resistance, thus affect computation complexity and
accuracy. Because the impact of process variations is too com-
plex to be expressed by a mathematical closed-form solution,
we model it as a uniform distribution with a maximum range.

The actual matrix represented by memristor crossbar is

M′ = M + M ◦ (var · Rd) (18)
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where var is the maximum variation percentage, usually
range from 5% to 20% [22], and Rd is a matrix whose ele-
ments are random number whose absolute values are less than
one. All voltage inputs and outputs are stored with 8-bit preci-
sion.

4.2. Experiments Setup

Experiments were given in Matlab 2015a a on a PC (Intel
i7-6700, 16GB RAM, Windows 10 Pro). Since size of the ma-
trix could affect results, linear problems with different number
of constraints were tested. The number of constraints varies
from 256 to 1024 exponentially while the number of variables is
one third of the number of constraints. 100 randomly generated
feasible tests and 100 randomly generated infeasible tests were
given for both two implementations under no process variation,
up to 5% process variation, up to 10% process variation and up
to 20% process variation. Results in optimal value and latency
were compared to the results obtained from using Matlab lin-
prog function. Following aspects were taken into consideration:
Relative error, number of iterations, and number of iterations
for detecting infeasibility, speed and energy efficiency.

4.3. Accuracy

Under ideal condition, matrix operations on memristor
crossbar-based design should be accurate given Kirchhoffs law
[11]. However, as mentioned above, due to process variations,
the actual memristance matrix of a memristor crossbar may be
different from the theoretical values. Optimal values are used to
compare with results from Matlab function to calculate relative
errors. Accuracy tests results are shown in Fig. 5.

For tested process variation the inaccuracy range is 0.2% to
9.9% for Memristor Crossbar-based Linear Program Solver and
0.8% to 8.5% for Memristor Crossbar-based Linear Program
Solver for Large Scale Operation. Inaccuracy decreases with
increasing of numbers of constraints. Both implementations
have shown reliable and accurate performance. Even for up
to 20% process variation, relative error can be as low as 1%.

Relative error being immune to even up to 20% process vari-
ation is a surprising result. To investigate this, we tested Mat-
lab linprog function with matrices with process variation. To
our surprise, relative error is similar to what we get from PDIP
solver simulation. It can be concluded that, linear program are
not affected by process variation too much, the larger the size,
the less impact process variation could result.

Another observation is that memristor crossbar-based linear
program solver for large-scale operations is very reliable in
terms of accuracy. However, due to the constant step length
and non-singular system by introducing noise, implementation
for large-scale operations may fail to converge in some rare
cases. We believe that some singular matrices induced by pro-
cess variations in the intermediate steps may cause such steep
drop. While memristance is altered under the impact of process
variation, its mapping matrix might be changed from a non-
singular matrix to closer to a singular matrix (with determinant
equal to 0), which could lead to zero solution or less accurate

(a) Accuracy simulation results of memristor crossbar-based linear
program solver. Results are compared to Matlab linprog function.
Number of constraints varies from 4 to 1024.

(b) Accuracy simulation results of memristor crossbar-based linear
program solver for large scale operations. Results are compared to
Matlab linprog function. Number of constraints varies from 4 to 1024.

Figure 5: Simulated Accuracy.

solution for the linear system. Since the coefficient size is rela-
tively small, it could be more easily affected by some elements
change and turn into a singular matrix.

Apart from singular matrix, matrix whose determinant is
close to zero could be more vulnerable to process variations.
Recall that each unknown in the solution of a linear system can
be formulated as the division between determinants of a sub-
matrix of coefficient matrix and coefficient matrix according to
the Crammers rule; the solution is inversely proportional to the
determinant of coefficient matrix. Hence, matrices whose de-
terminant values are close to zero could lead to massive change
in values of solution under the impact of process variation. The
accuracy for above two circumstances could be easily affected
by process variation.

However, based on our randomly generated experiments, the
above two circumstances are not common, and are very rare for
large-scale matrices. Besides, based on our experiments, solver
for large-scale operations could always converge if a checking
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scheme is added, that is, solve the problem again if fail to con-
verge. Since process variation differs from each time of writing,
actual matrix represented by memristor crossbar is not same as
the previous time, thereby, could guarantee convergence.

4.4. Estimated Computation Latency and Energy Efficiency
Our experiments based on memristor model from [23] show

significant improvement in speed of memristor crossbar based
implementation. For instance, the measured delay for Mat-
lab linprog if the number of constraints is 1024 is 6.23s; the
estimated delay for memristor-crossbar based solver is 239ms
with 20% process variation, 195ms with 10% process variation,
155ms with 5% variation and, though under ideal condition,
78ms if no process variation. That would be at least 26x im-
provements in speed. Improvements for infeasibility detection
is more significant, an infeasible system with 1024 constraints
could cost Matlab linprog around 30s to detect while estimated
delay on memristor crossbar-based solver is 265ms with 20%
process variation, which is at least 113x speed up.

Our estimation is based on (i) actual simulation results iter-
ation times for convergence, and (ii) the amount of coefficients
updating in each iteration is 2.7N(the number of variables is
one third of the number of constraints) where N is the number
of optimization constraints. A maximum of 110x estimated im-
provement in speed is achieved compared with PDIP algorithm
implemented in MATLAB executed on an Intel I7 server (when
the number of constraints is 1024). This significant improve-
ment is because of reduction in computational complexity and
speedup due to dedicated hardware implementation. Detailed
comparison results are shown in Fig. 6.

For proposed memristor crossbar-based linear program
solver for large scale operations, speed up over Matlab linprog
is also vast. A linear program with 1024 constraints can be
solved by proposed structure in less than 80 ms(with 20% pro-
cess variation) while it could cost Matlab linprog function 6234
ms to derive a solution. However, unlike memristor crossbar-
based linear program solver, estimated computation latency
does not increase with process variation increment. It can be
explained by its constant step length and number of iterations
tests results.

As for energy efficiency, our experiments based on memris-
tor model from [23] show significant improvement in energy
efficiency of memristor crossbar based implementation. For in-
stance, the estimated energy consumption for Matlab linprog if
the number of constraints is 1024 is 218.1J; the estimated de-
lay for memristor-crossbar based solver is 12.1J with 20% pro-
cess variation, 8.9J with 10% process variation, 6.2J with 5%
variation and, though under ideal condition, 0.9J if no process
variation. That would be at least 24x improvements in energy
efficiency. Improvements for infeasibility detection is more sig-
nificant, an infeasible system with 1024 constraints could cost
Matlab linprog around 1023.1J to detect while estimated de-
lay on memristor crossbar-based solver is 10.9J even with 20%
process variation, which is at least 113x speed up.

An average of 30x estimated improvement in energy effi-
ciency is achieved compared with MATLAB linprog executed
on an Intel I7 server (when the number of constraints is 1024).

(a) Estimated computation latency of memristor crossbar-based linear
program solver compared with Matlab linprog function and PDIP im-
plemented in Matlab . Number of constraints varies from 4 to 1024.

(b) Estimated computation latency of memristor crossbar-based linear
program solver for large scale operations. compared with Matlab lin-
prog function. Number of constraints varies from 4 to 1024.

Figure 6: Estimated Computation Latency.

The improvement is even larger on proposed implementation
for large-scale, an average of 273x. This significant improve-
ment is because of reduction in computational complexity and
speedup due to dedicated hardware implementation. Detailed
comparison results are shown in Fig. 7.

4.5. Results Analysis
Based on our numerous experiments, proposed memristor

crossbar-based linear program solver and memristor crossbar-
based linear program solver for large scale operations are ca-
pable of solving linear programs in a much smaller amount of
time while consume less energy. Especially for some large scale
infeasible linear problems, which could be time consuming for
Matlab linprog function, our proposed implementations could
detect infeasibility much faster. Even though process variation
could affect number of iterations, overall speedup is still huge
thanks to speed advantages of memristor crossbar in matrix-
vector operations.
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(a) Estimated energy consumption of memristor crossbar-based linear
program solver compared with Matlab linprog function and PDIP im-
plemented in Matlab . Number of constraints varies from 4 to 1024.

(b) Estimated energy consumption of memristor crossbar-based linear
program solver for large scale operations. compared with Matlab lin-
prog function. Number of constraints varies from 4 to 1024.

Figure 7: Estimated Energy Consumption.

Accuracy tests show that even with up to 20% process vari-
ation, proposed memristor crossbar-based implementations can
always give a reliable optimal solution. Memristor crossbar-
based linear program solver for large scale operations may not
guarantee a positive solution due to constant step length, which
may also causing converge failure, but it can generate an ac-
ceptable optimal value. Convergence failures can be eliminated
by a double checking scheme, which solve the problem for a
second time if solver indicates infeasible.

In brief, proposed memristor crossbar-based linear program
solver and memristor crossbar-based linear program solver for
large scale operations are verified to be reliable in accuracy,
speed and energy efficiency.

5. Conclusion

This paper described the design of memristor crossbar-based
linear program solver using primal-dual interior point algo-

rithm. Two implementations using memristor crossbar have
been presented for effectively trading-off between hardware
complexity and computing speed. We also presented exten-
sion schemes to large-scale applications. Experimental results
demonstrate reliable performance with high accuracy and high
efficiency.
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