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ABSTRACT

Because network data is often incomplete, researchers con-
sider the link prediction problem, which asks which non-
existent edges in an incomplete network are most likely to
exist in the complete network. Classical approaches com-
pute the ‘similarity’ of two nodes, and conclude that highly
similar nodes are most likely to be connected in the com-
plete network. Here, we consider several such similarity-
based measures, but supplement the similarity calculations
with community information. We show that for many net-
works, the inclusion of community information improves the
accuracy of similarity-based link prediction methods.
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1. INTRODUCTION
Network analysis is becoming an increasingly popular re-

search topic in computer science. Because data is often in-
complete (e.g., in genetic networks where links are deter-
mined experimentally), researchers wish to predict which
missing links are most likely to exist. Algorithms for this
problem typically assume that ‘similar’ nodes are likely to
be connected [5]. The question, then, lies in defining ‘sim-
ilarity.’ In this paper, we consider several methods that
use local information to calculate similarity, and supplement
them with community information. Over 10 networks, our
enhanced metrics typically outperform the original methods.

2. ENHANCED LINK PREDICTION
We believe that community membership information, iden-

tified through metadata, community detection algorithms,
or other sources, can provide valuable information for link
prediction. Consider a metric in which the similarity of
nodes a and b is based on their number of shared neigh-
bors. Suppose that we use this metric to analyze a friend-
ship network, and that shared neighbor c knows a from the
same school and b from the same workplace, while shared
neighbor d knows both a and b from the same sports team.
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Intuitively, it seems that d should contribute more heavily
to the similarity between a and b, because d knows both a

and b from the same context.
With this intuition, we modify several base local similarity

metrics for link prediction: Common Neighbors (CN), Re-
source Allocation (RA), Jaccard Similarity, Leicht-Holme-
Newman, and Sorensen Similarity [5]. Of these, CN, RA,
or one of their modifications is the top performer on each
dataset, so we present only these measures here.

For nodes a and b, let Γ(a) be the set of neighbors of a,
Γ(a, b) = Γ(a) ∩ Γ(b), and d(a) be the degree of a. Then:

Common Neighbors: CN(a, b) = |Γ(a, b) | .

Resource Allocation: RA(a, b) =
∑

c∈Γ(a,b)

1

d(c)
.

We generate communities using the Louvain method for
greedy modularity optimization (Mod) [2], Infomap (IM) [8],
and the Link Communities method (LC) [1]. LC generates
communities of edges rather than nodes; we thus interpret
its results in two ways: first, as a collection of overlapping
communities of nodes (each, a “node-community”), and sec-
ond, as a partitioning of edges (each, an “edge-community”).

We consider a variety of modifications to the original lo-
cal similarity measures, including awarding extra points to
pairs of nodes that share many communities and penaliz-
ing pairs of nodes that do not share communities. For each
of CN and RA, one modification stood out, and so due to
space constraints, we present only those here. Because we
consider both node-communities and edge-communities, we
present two versions of each of these modifications. CN1 and
RA1 use node-communities from Mod, IM, and LC, while
CNEdge1 and RAEdge1 use edge-communities from LC.

For each of the metrics described below, C(a) and C(a, b)
are, respectively, the set of node-communities containing a

and the set of edge-communities containing edge (a, b).

• Common Neighbors 1 (CN1) / Common Neigh-
bors Edge 1 (CNEdge1): Begin with CN(a, b), and
for every neighbor i shared by a and b, CN1(a, b) adds
a point for every community that a, b, and i share.
CNEdge1(a, b) adds a point if edges (a, i) and (b, i)
are in the same edge-community.

CN1(a, b) = CN(a, b) +
∑

i∈Γ(a,b)

|C(i) ∩ C(a) ∩ C(b) | .

CNEdge1(a, b) = CN(a, b)+
∑

i∈Γ(a,b)

|C(i, a) ∩ C(i, b)| .

• Resource Allocation 1 (RA1) / Resource Al-
location Edge 1 (RAEdge1): RA1(a, b) modifies



RA(a, b) to only consider neighbors i that are in a com-
munity with both a and b, and weights i’s contribution
by the number of communities it shares with a and b.
RAEdge1(a, b) considers only shared neighbors i with
edges (a, i) and (b, i) in the same edge-community.

RA1(a, b) =
∑

i∈Γ(a,b)

|C(i) ∩ C(a) ∩ C(b)|

d(i)
.

RAEdge1(a, b) =
∑

i∈Γ(a,b)

|C(i, a) ∩ C(i, b)|

d(i)
.

3. EXPERIMENTS AND RESULTS
We test these metrics on 10 datasets: Amazon (a book

co-purchasing network from Amazon.com [3]), Grad and
Ugrad (portions of the Facebook network corresponding
to graduate and undergraduate students at Rice University
[6]), HS and SC (protein interaction networks for humans
and a yeast species [7]), Email (an e-mail network from the
University Rovira i Virgili [4]), HEP andRel (collaboration
networks from arxiv.org for two fields of physics [3]), Wiki
(voting network from Wikipedia elections [3]), and Word
(an experimentally created associative thesaurus [9]). These
networks range in size from 503 nodes and 3256 edges (Grad)
to 270, 347 nodes and 741, 142 edges (Amazon).

For each network, we perform experiments using 10-fold
cross validation, in which 90% of the links are used as train-
ing data and the remaining 10% used for testing. For each
round of experiments, we use the training data to generate
communities using IM, Mod, and LC (each algorithm consti-
tutes a different experiment). Using our metrics, we identify
the n most likely links, where n is 10% of the size of the test
data, and determine the fraction of these links present in the
test data. Our networks may be incomplete (even when data
is not withheld), and so even a perfect link prediction metric
may not receive a perfect score, because it may predict links
that exist in the full data, but do not exist in the incomplete
data. Thus, we are chiefly interested in how scores compare
across different metrics, not the absolute scores themselves.

Table 1 contains the results of these experiments. To save
space, we present the performance of each base metric (CN
and RA) and the performance of CN1 (or CNEdge1) and
RA1 (or RAEdge1) for the best performing algorithm (e.g.,
the row for ‘Amazon’ indicates that the communities from
IM allowed CN1 to achieve a precision of 0.374). ‘LCE’ in-
dicates that CNEdge1 or RAEdge1, with communities from
Link Communities, was the best metric. Table 2 contains
the average performance of each metric for each community
detection method.

These results show that use of community information
typically leads to an improvement in precision, sometimes
by a large degree, such as with network SC, which saw a 6-
fold improvement from RA to RA1. With one exception, the
best performing metric is an enhanced metric. On average,
the tested modifications improved upon the base metric re-
gardless of community detection method, and CNEdge1 and
RAEdge1 give the greatest improvement overall.

4. CONCLUSION AND FUTURE WORK
These results show that community information often boosts

the performance of base metrics, sometimes by a large amount.
We wish to identify which factors lead to the success of a par-
ticular metric. Which network features can guide selection of

Table 1: Precision for Base and Enhanced Metrics
CN1/ RA1/

CN CNEdge1 RA RAEdge1
Amazon 0.371 0.374 (IM) 0.351 0.411 (LC)
Grad 0.552 0.548 (LCE) 0.72 0.715 (LC)
Ugrad 0.576 0.675 (Mod) 0.689 0.724 (IM)
HS 0.111 0.157 (LC) 0.073 0.126 (LCE)
SC 0.194 0.375 (LC) 0.083 0.471 (LCE)

Email 0.351 0.369 (LCE) 0.326 0.384 (LC)
HEP 0.699 0.804 (LCE) 0.923 0.928 (LC)
Rel 0.968 0.968 (all) 0.99 0.995 (LCE)
Wiki 0.177 0.195 (Mod) 0.142 0.146 (LC)
Word 0.140 0.149 (Mod) 0.147 0.149 (Mod)

Average 0.414 0.444 (LCE) 0.444 0.494 (LCE)

Table 2: Avg. Prec. for Base and Enhanced Metrics
Base Mod IM LC LCE

CN 0.414 0.435 0.436 0.433 0.444
RA 0.444 0.455 0.489 0.455 0.494

an appropriate metric? We are also interested in fine-tuning
our definitions: for instance, in CN1, the similarity between
two nodes gets a point for every shared neighbor and every
shared community. Can we weight these values differently?
We have shown that a simple modification boosts accuracy,
but more improvement is likely possible.
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