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Abstract

A great deal of work focuses on analyzing various features of

networks; however, network data is often limited and incom-

plete. Because of this, researchers consider the link predic-

tion problem, which asks the question of which non-existent

edges in an incomplete network are most likely to actually

exist in the complete network. Classical approaches to this

problem compute the ‘similarity’ of two unconnected nodes,

and conclude that highly similar nodes are the most likely

to be connected in the complete network [15]. In this pa-

per, we consider several such similarity-based measures, but

supplement the similarity calculations with community in-

formation obtained from community detection algorithms.

We consider a variety of datasets from multiple domains and

several different methods of including community informa-

tion, and show that, in most of these cases, the inclusion of

community information improves the accuracy of similarity-

based link prediction methods.

link prediction, social networks, communities

1 Introduction

In recent years, network analysis has become an increas-
ingly popular topic for computer science researchers.
However, much of available network data is incomplete.
For example, in a network representing interactions be-
tween genes in some species, links are typically deter-
mined experimentally, and so the known links may rep-
resent fewer than 1% of the actual links [21]. Because
of this, researchers sometimes wish to know which pairs
of nodes that are not connected in the known network
are likely to be connected in the actual network. Such
knowledge is useful in cases like a gene interaction net-
work, because it can suggest which experiments a biolo-
gist should perform to identify existing interactions. It
is also useful for researchers designing or applying net-
work algorithms, as such algorithms may perform more
accurately when more links are known.

Algorithms for the link prediction problem typically
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compute the ‘similarity’ between two nodes, with the
assumption that nodes that are highly similar are more
likely to be connected than those that are dissimilar
[15]. The research question, then, lies in the question
of how best to define ‘similarity.’ Simple measures
consider easy-to-compute factors like the number of
neighbors shared between two nodes, whereas more
complex definitions partition the network into groups,
and then determine the probability that two nodes are
connected based on the group memberships of those
nodes [4, 22]. Methods of the latter type can be more
accurate than those of the former type; however, they
typically run very slowly and may only be practical for
networks of a few thousand nodes [15].

In this paper, we consider several simple methods
that use local information to predict the existence of a
link between two nodes, but then supplement this local
information with community membership information.
For example, if two nodes, as well as some of their shared
neighbors, are all in communities together, then we may
infer that a link between them is more likely than if they
and their shared neighbors are in different communities.
We test our methods on 10 datasets from a variety of
domains, ranging from scientific collaboration networks
to friendship networks to gene interaction networks, and
show that using community information often increases
the precision accuracy of the results.

The remainder of this paper is organized as fol-
lows: First, we discuss related work, beginning with
a discussion of existing link prediction methods, includ-
ing local similarity-based link prediction methods, and
then describe some algorithms for community detection.
Next, we describe the experiments we perform and the
datasets used in these experiments. After that, we dis-
cuss the results of these experiments, and finally con-
clude with suggestions for future work.

2 Related Work

In this section, we first discuss several methods for
link prediction, beginning with those based on local
similarity. We also include a discussion of how one can
evaluate a link prediction method.



2.1 Local Similarity Measures We consider six
types of local similarity measures. Throughout this
paper, we refer to these metrics as ‘base metrics’, as
they provide the foundation for our ‘enhanced metrics’
that incorporate community information. For a vertex
v, let Γ(v) be the set of all neighbors of v, and let d(v)
be the degree of v. Then for nodes a and b, we use the
following base metrics:

• Common Neighbors: |Γ(a) ∩ Γ(b) | , the number of
neighbors shared by both a and b.

• Jaccard Similarity: |Γ(a)∩Γ(b)|
|Γ(a)∪Γ(b)| , the number of ver-

tices adjacent to both a and b normalized by the
number of vertices adjacent to either a or b [6].

• Sorensen Similarity: |Γ(a)∩Γ(b)|
d(a)+d(b) , the number of

vertices adjacent to both a and b normalized by
the sum of the degrees of a and b [20].

• Resource Allocation:
∑

c∈Γ(a)∩Γ(b)

1

d(c)
, the sum of

the inverses of the degrees of vertices adjacent
to both a and b. Intuitively, this is similar to
the Common Neighbors measurement, but vertices
with higher degree are worth less than those with
low degree, because it is assumed that a high degree
vertex connected to both a and b is less meaningful
than a low degree vertex connected to both a and
b [23].

• Adamic-Adar:
∑

c∈Γ(a)∩Γ(b)

1

log(d(c))
is similar to

Resource Allocation, but the denominator of the
fraction is the log of the degree of the shared
neighbor, rather than simply the degree [1].

• Leicht-Holme-Newman: |Γ(a)∩Γ(b)|
d(a)×d(b) , the number of

vertices adjacent to both a and b normalized by the
product of the degrees of a and b [9].

The Common Neighbors metric has been used in col-
laboration networks, where it has been shown that in-
dividuals who have collaborated with many of the same
people are more likely to collaborate together in the fu-
ture [17]. The Jaccard Similarity, Sorensen, and Leicht-
Holme-Newman metrics use the same principle, but nor-
malize this value. The Resource Allocation index is
based on the principle of distributing resources along
the edges of a network. If a has some unit of resource
and distributes it equally to its neighbors shared by b,
and each of those neighbors then allocates its portion
of the resources equally between its neighbors, then the
amount of resource that b receives is measured by the
Resource Allocation index.

2.2 Other Link Prediction Methods We now dis-
cuss two other link prediction methods, both of which
partition the network into groups and then determine
node similarity based on shared group membership.
These methods are inefficient and impractical for net-
works of more than a few thousand nodes, but are of the-
oretical importance. Unlike the methods in the previ-
ous section, these algorithms directly incorporate group
membership information into their results.

Clauset, Moore, and Newman propose a method
to determine the hierarchical structure of a network by
using MCMC sampling to create a binary dendrogram
that joins nodes into groups [4]. In this dendrogram,
each node is initially in its own group, represented
by the leaves, and then, at each internal node of the
dendrogram, two groups X and Y are joined together
to form a larger group. At each such step, one calculates
the number of links between nodes in X and nodes in
Y , and then normalizes this by the number of possible
links between nodes in X and nodes in Y . This gives
a value between 0 and 1 which can be interpreted as
the probability that a node in X is connected to a node
in Y . This process can be very slow due to the time
needed to produce the dendrogram. Since this method
was introduced, a variety of similar methods and models
have been produced.

Another network model, the stochastic block model,
partitions nodes into groups, and the probability that
two nodes are connected depends only on their group
memberships [22]. Each possible partition is assigned
a likelihood depending on the number of links between
different parts as well as the number of links within
each part. Like the Clauset, Moore, and Newman
hierarchical algorithm, this method is inefficient and
impractical for large networks.

2.3 Evaluating a Link Prediction Method The
success of a link prediction algorithm on a network
N can be measured by two methods: precision and
area under the receiver operating characteristic curve
(AUROC) [15]. To calculate these, one can perform 10-
fold cross validation. For each fold, 10% of the existing
links are withheld from the network to create a new
network N ′. This is done 10 times, and each time, a
different 10% of the links are withheld. This ensures
that each link is withheld exactly once, so all links are
present in the training data and the test data an equal
number of times.

To measure precision, one uses N ′ to identify the n
links that are most likely to exist in the full network,
and then calculates the fraction of these n links that are
present in the withheld 10% of links.

When evaluating precision scores in this paper, it



is important to note that many of the networks are
incomplete (even when none of the known links are
withheld). Consider a biological network in which
protein interactions are identified experimentally, and
only 5% of the interactions have been identified. A
perfect link prediction algorithm, then, might receive a
precision score of only 5%: even if all of its predictions
are actually correct, only 5% of the predicted links have
been confirmed and count toward the precision score.
Thus, while one can compare precision scores of different
algorithms against one another on the same network,
they should not be compared across datasets or against
an absolute standard.

To measure AUROC, one samples m pairs of edges
that are not in N ′, where one edge e0 in the pair is
present in the list of withheld edges and the other edge
e1 is not in this list. The link prediction method is used
to score each pair by determining which of e0 or e1 is
more likely to be present in the full network. If the
method determines that e0 is more likely than e1 to be
in the full network, then the pair is assigned a score of
1. If the method determines that e0 and e1 are equally
likely to be in the network, then the pair gets a score
of 0.5, and if the method determines that e1 is more
likely than e0 to be in the network, then the pair gets a
score of 0. To estimate the AUROC, one averages these
scores over all sampled pairs.

3 Community Detection Methods

We now discuss the several community detection meth-
ods that we use to identify communities in our networks.

Community detection methods have their roots
in graph clustering and partitioning; as such, many
community detection methods partition the network
into disjoint communities. More recently, researchers
have begun to develop community detection methods
that identify overlapping communities. In our work, we
consider algorithms of both types.

3.1 Greedy Modularity Optimization One
method to determine the quality of a partition is
modularity [3], which is based on the principle that a
good community has many internal links but is mostly
isolated from the rest of the network. The modularity
of a partition is defined as follows: Let m be the
number of edges in the network, Ai,j be the number of
edges between vertices i and j, ki be the degree of node
i, and δ(i, j) be 0 if i and j are in different parts of the
partition and 1 if they are in the same part. Then the
modularity Q of a partition is:

Q =
1

2m

∑
i,j

[
Aij −

kikj
2m

]
δ(i, j).(3.1)

In this paper, we use the Louvain method for greedy
modularity optimization [3] to partition the network
into high modularity parts.

3.2 Link Communities The next method we con-
sider is the Link Communities method of Ahn, Bagrow,
and Lehmann [2]. Unlike the Louvain method for mod-
ularity optimization, the Link Communities algorithm
identifies communities that may overlap one another.
This algorithm is based on the concept of placing edges,
rather than nodes, into communities.

To find communities in a network N , one begins
by forming a new network N ′ such that each node
in N ′ represents an edge from N . Two nodes in N ′

are connected if the corresponding edges in N are
adjacent. Edges connecting nodes in N ′ are weighted
according to a similarity function over the edges in
N , and single-linkage hierarchical clustering is used to
create a dendrogram, which is then split at the point of
maximum partition density. See [2] for full details.

When evaluated on networks that contain some
sort of ground truth communities, this method has
been shown to be more effective than others, includ-
ing greedy modularity optimization, at identifying the
ground truth communities [2].

3.3 Infomap The final method we discuss is the In-
fomap partitioning algorithm of Rosvall and Bergstrom
[19]. As with greedy modularity optimization, this
method produces a partitioning of the network; how-
ever, even without overlap, the results are generally of
very high quality. Fortunato and Lancichinetti evalu-
ated several detection methods and concluded that, of
the methods tested, Infomap was the most accurate [8].

Inspired by the idea of a cartographer making a
map, who wishes to convey important geographical in-
formation without too deep a level of detail, Rosvall and
Bergstrom attempt to identify a coarse-grained repre-
sentation of how information flows through a network.
In a partitioning, each cluster is given a name (number)
and each node within a cluster is given its own local
name. The goal of the algorithm is to find a partitioning
and labeling of nodes in the network so as to minimize
the expected length of a random walk’s description. An
initial clustering is identified using a greedy algorithm,
and simulated annealing is then used to improve the
results.

4 Enhanced Link Prediction

In this section, we begin with an overview of our
methods, and then describe the experiments that we
conduct on several datasets. Specific details about our
experimental methodology follow in the next section.



We perform two types of experiments. First, we
modify local similarity metrics, or ‘base metrics’, to
account for community membership. Next, we modify
the hierarchical link prediction method of Clauset,
Moore, and Newman using communities generated by
the Link Communities method.

4.1 Modification of Local Similarity Measures
We believe that community membership information
can provide valuable information for the link prediction
problem. Consider the Common Neighbors similarity
metric, which simply calculates the neighbors shared
between two nodes. Suppose that we are using this
metric to analyze a friendship network.

Suppose that individual c knows both a and b,
but c knows a from the community corresponding
to some school, and c knows b from the community
corresponding to some workplace. Suppose additionally
that a and b both have a neighbor d in common, and d
knows both a and b from the community corresponding
to some sports team. When calculating the probability
that a and b know one another, it is possible that the
shared neighbor d should count more heavily towards
this probability than the shared neighbor c, since a and
b both know d from the same context. The fact that
a and b are in at least one community together should
also count towards this probability.

With this intuition in mind, we begin with six base
local similarity metrics for link prediction, and enhance
each method with community information. In some
metrics, we assign extra points to a pair of nodes a and
b if they share neighbors in the same communities, or if
a and b themselves are in the same communities.

For each method, we use the following shorthand:
for nodes a and b, let Γ(a) be the set of neighbors of a,
Γ(b) be the set of neighbors of b, Γ(a, b) be the neighbors
shared between a and b, d(a) be the degree of a, and d(b)
be the degree of b.

As our base metrics, we consider Common Neigh-
bors, Jaccard Similarity, Sorensen, Leicht-Holme-
Newman, Adamic-Adar, and Resource Allocation, de-
scribed in the Related Work section. Of these six met-
rics, either Common Neighbors or Resource Allocation
was the most successful base metric on each of the
datasets considered, and so to save space, we present
only their modifications here.

We generate communities using the Louvain
method for greedy modularity optimization, Infomap,
and the Link Communities method. Because the Link
Communities method generates communities of edges
rather than nodes, we interpret its results in two ways:
first, simply as a collection of overlapping communities
of nodes, and second, as a partitioning of relationships.

Call the former method Link Communities- Node, and
the latter method Link Communities- Edge. Call the
former type of community a node community, and the
latter type an edge community.

We consider a variety of modifications to the origi-
nal local similarity measures. For a pair of nodes (a, b),
most of these modifications either assign extra points
for neighbors shared between a and b that are in some
of the same communities as a and b, or assign extra
points for all communities that a and b are both in, or
both. Some of these methods performed very poorly,
whereas others were quite successful. We present the
most accurate modifications below.

For each of the metrics described below, given a
particular community detection method, let C(n) be
the set of node communities to which node n belongs.
For Link Communities- Edge, let C(n,m) be the set of
edge communities to which edge (n,m) belongs. For
greedy modularity optimization and Infomap, the size
of C(n) is 1, and for Link Communities- Edge, the size
of C(n,m) is 1. For Link Communities- Node, the size
of C(n) may be greater than 1.

4.1.1 Common Neighbors We enhance the Com-
mon Neighbors (CN) base metric in 5 ways. For
nodes a and b, let CN(a, b) be the number of com-
mon neighbors between a and b. The first three meth-
ods (CN1, CN2, CN3) can be computed using the node
communities obtained from greedy modularity opti-
mization, Infomap, and Link Communities- Node. The
last two methods can be computed using the edge com-
munities from Link Communities- Edge.

• Common Neighbors 1 (CN1): In this measure,
CN1(a, b) begins with the base score given by
CN(a, b), and then for every neighbor i shared by
a and b, CN1(a, b) receives an additional point for
every community that a, b, and i are all in.

CN1(a, b) = CN(a, b)+
∑

i∈Γ(a,b)

|C(i) ∩ C(a) ∩ C(b)| .

(4.2)

• Common Neighbors Edge 1 (CNEdge1): In this
measure, CNEdge(a, b) begins with the base score
given by CN(a, b), and then for every neighbor
i shared by both a and b, if the relationships
between both a and i and b and i fall into the same
community, CNEdge1(a, b) receives another point.

CNEdge1(a, b) = CN(a, b)+
∑

i∈Γ(a,b)

|C(i, a) ∩ C(i, b)| .

(4.3)



4.1.2 Resource Allocation We enhance the
Resource Allocation metric in 2 ways, the
first computed using node communities from
greedy modularity optimization, Infomap, or Link
Communities- Node, and the second computed
using edge communities from Link Communities-
Edge.

– Resource Allocation 1 (RA1): RA1(a, b) is
the sum over all vertices i ∈ Γ(a, b) of
1+|C(i)∩C(a,b)|

d(i) . This is similar to the original

Resource Allocation definition, but we give ex-
tra weight to shared neighbors i that are in at
least one community with both a and b, and
weight i’s contribution toward the total score
by the number of communities that i shares
with a and b.

RA1(a, b) =
∑

i∈Γ(a,b)

1 + |C(i) ∩ C(a) ∩ C(b)|
d(i)

.

(4.4)

– Resource Allocation Edge 1 (RAEdge1): This
is similar to RA1, except we give extra weight
to shared neighbors i such that (i, a) and (i, b)
are in at least one edge community together.

RAEdge1(a, b) =
∑

i∈Γ(a,b)

1 + |C(i, a) ∩ C(i, b)|
d(i)

.

(4.5)

4.2 Hierarchical Link Prediction We also
consider a variety of link prediction methods that
are based on the hierarchical link prediction algo-
rithm of Clauset, Moore, and Newman [4]. Their
method constructs a binary dendrogram represent-
ing a hierarchical community structure. This con-
struction is extremely slow because it uses an
MCMC sampling process, so we instead use the
Link Communities algorithm, which also produces
a hierarchical community structure. We modify
Clauset, Moore, and Newman’s method to work
with this dendrogram. However, these results were
much worse than those described in the previous
section, so we do not describe them here.

5 Datasets

We test the preceding metrics, base and enhanced,
on 10 datasets, described in Table 1. Networks
Amazon, Email, Word, and Wiki were originally
directed, and we converted them to undirected
networks by simply converting every arc into an
undirected edge.

6 Experimental Methodology

For each network N in Table 1, we perform exper-
iments using 10-fold cross validation. We partition
N ’s links into 10 equal-sized sets. We then perform
10 rounds of experiments. Each such set is used as
test data in one round, while the remaining 90% of
the links are used as training data. For round i,
let Ni denote the network defined by the links in
the training data, and let Ti denote the set of links
constituting the test data.

For each round of experiments, we use the training
data to generate communities using Infomap, the
Louvain method for greedy modularity optimiza-
tion, and Link Communities.

Then, using each of the base and enhanced metrics
described in Section 4, we identify the n most
likely links that are not present in Ni, where

n = |Ti|
10 . We then calculate how many of the

n found links are actually in Ti. This value,
averaged over all 10 folds, is the precision of the
metric. As before, we caution that the precision
scores should not be compared across networks or
to an absolute standard. Many of the networks,
such as the biological networks in which links are
experimentally determined, are incomplete, even
when links are not withheld. For such networks,
even a perfect link prediction method could get a
low precision score because although its predictions
are all correct, the link does not exist in the known
(incomplete) network. Thus, a low precision score
should not be taken as an indication that a method
is objectively ‘bad’; rather, the precision scores
should be only used to compare algorithm accuracy.

We also calculate the area under receiver operating
characteristic curve. We select 1000 pairs of edges
in which the first edge is present in Ti and the
second edge is not present in either Ni or Ti, and
then use each metric to score the two edges. Using
this information and averaging over all 10 folds, we
estimate the AUROC value.

7 Results

In this section, we discuss the modified local sim-
ilarity metrics from section 4.1. Our results show
that the modified local similarity metrics perform
quite well in comparison to the base local similarity
metrics. The modified hierarchical methods per-
form much worse than even the base local similar-
ity metrics, so to save space we do not present the
results here.



Table 1: Datasets

Network Description # Nodes # Edges

Amazon [10]

A product co-purchasing network from Amazon.com

Two nodes are connected if the products are frequently purchased together. 270,347 741,142

Grad [16] Facebook network for graduate students at Rice University 503 3256

Ugrad [16] Facebook network for undergraduate students at Rice University 1220 43208

HS [18, 14] Gene interaction network for H. Sapiens 10,298 54,655

SC [18, 14] Gene interaction network for S. Cerevisiae 5523 82,656

Email [5] E-mail network from University Rovira i Virgili in Spain 1133 5452

HEP [13] High-energy physics co-authorship network from Arxiv.com 9877 25,988

Rel [13] General relativity physics co-authorship network from Arxiv.com 5242 14,496

Word [7]

Experimentally created word associative thesaurus

Two words are connected if subjects frequently thought of one when shown the other. 23,219 305,500

Wiki [11, 12]

Administrator election network from Wikipedia.com

Two nodes are connected if one participated in the election of the other. 7115 100,762

Table 2: Precision of Base Metrics

CN Jacc Sor LHN RA AA

Amazon 0.3713 0.0193 0.0193 0.0139 0.3540 0.3702

Grad 0.3713 0.5000 0.5000 0.0182 0.7212 0.5848

Ugrad 0.5757 0.5870 0.5870 0.0322 0.6889 0.6109

HS 0.1110 0.0113 0.0113 0.0007 0.0726 0.1042

SC 0.1944 0.0306 0.0306 0.0000 0.0825 0.1706

Email 0.3509 0.1000 0.1000 0.0018 0.3255 0.3452

HEP 0.6988 0.6288 0.6288 0.0635 0.9227 0.8381

Rel 0.9676 0.9828 0.9828 0.0717 0.9903 0.9690

Word 0.1402 0.0013 0.0013 0.0000 0.1471 0.1403

Wiki 0.1773 0.0001 0.0001 0.0000 0.1420 0.1702

7.1 Precision Table 2 shows the results of eval-
uating each of the base metrics on each of the net-
works using 10-fold cross validation. For each net-
work, the best performing metric has been bolded.
Two metrics, Common Neighbors and Resource Al-
location, are each the best performing metric for
half of the networks, and the other metrics are not
the best for any network.

We now present the CN , CN1, CNEdge1, RA,
RA1, and RAEdge1 results for all networks using
all community detection methods. Table 3 contains
the results for each network using communities
found using the Link Communities (LC) method,
the Louvain method (Mod), and Infomap (IM).

On every network except Grad, the best perform-
ing metric is one that incorporates community in-
formation. On 7 out of the 10 networks, some
form of RA1 outperformed the other metrics, both
base and enhanced (including ones not presented
here), although it is not clear which community
detection method is best. Additionally, regardless
of choice of community detection algorithm, all of
CN1, CNEdge1, RA1, and RAEdge1 outperform

their corresponding base metrics on average, some-
times by a large factor.

Although for some networks, it appears that every
metric does poorly, we again caution that this is not
necessarily the case. For some networks (especially
the biological networks, like HS) only a very small
fraction of all links are known, and thus even a
perfect link prediction would appear to have a low
score. For other networks, such as Rel, it appears
that the enhanced metric improves the base metric
only slightly: for example, the precision of RA on
Rel is 0.9903, and the precision of RAEdge1 is
0.9945. While this is only an increase of 0.0042 in
absolute terms, it covers nearly half of the distance
from the base metric score to a perfect score.

8 Analysis

In nearly every case, the enhanced metrics outper-
formed the associated base metrics. In the cases
where the enhanced metrics performed equally to
or worse than the base metrics, it is possible that
the community information was flawed. To evalu-
ate the likelihood of this possibility, we re-calculate
each metric using community information obtained
by applying the community detection algorithms
to the entire set of edges. That is, when identi-
fying communities, we use all edges, rather than
just the 90% of edges contained in the training set.
All other portions of each metric, such as the num-
ber of shared neighbors, are still calculated using
only the edges in the training set. Unsurprisingly,
we see a fairly significant improvement in perfor-
mance: even for network Grad, where the best met-
ric was previously the base metric RA, the best
metric is now RAEdge1. Naturally, in a real appli-
cation, a practitioner certainly will not have access



Table 3: Precision for Base and Enhanced Metrics

CN CN1(mod) CN1(LC) CN1(IM) CNEdge1 RA RA1(mod) RA1(LC) RA1(IM) RAEdge1

Amazon 0.3713 0.3717 0.3220 0.3740 0.3326 0.3507 0.3519 0.4114 0.3783 0.4097

Grad 0.5515 0.5455 0.5364 0.5364 0.5484 0.7212 0.7000 0.7152 0.6879 0.7030

Ugrad 0.5757 0.6748 0.6491 0.6738 0.6671 0.6889 0.7236 0.7007 0.7241 0.7144

HS 0.1110 0.1196 0.1572 0.1203 0.1402 0.0726 0.0755 0.1111 0.0762 0.1256

SC 0.1944 0.2961 0.3746 0.2734 0.3486 0.0825 0.1520 0.3724 0.1374 0.4707

Email 0.3509 0.3509 0.3291 0.3418 0.3691 0.3255 0.3455 0.3836 0.3473 0.3764

HEP 0.6988 0.6831 0.7762 0.7031 0.8038 0.9227 0.9196 0.9281 0.9204 0.9277

Rel 0.9676 0.9676 0.9676 0.9676 0.9676 0.9903 0.9917 0.9917 0.9917 0.9945

Word 0.1402 0.1486 0.1015 0.1473 0.1101 0.1471 0.1490 0.1276 0.1403 0.0940

Wiki 0.1772 0.1951 0.1437 0.1894 0.1515 0.1420 0.1397 0.1459 0.1419 0.1187

Average 0.4139 0.4353 0.4357 0.4327 0.4439 0.4443 0.4548 0.4888 0.4546 0.4935

to the complete set of edges, and so must use inac-
curate community information, but this experiment
demonstrates the importance of correct community
membership data.

In order to assist a practitioner in selecting an
appropriate metric, we present the following two
methods.

8.1 Metric Selection through Cross-
Validation In our original experiments, we
performed 10-fold cross-validation. In each itera-
tion, 10% of the network’s edges were withheld for
testing and the remaining 90% used for generating
communities and making predictions. For each of
these training sets containing 90% of the edges
from the original network, we perform another
level of 10-fold cross-validation by further dividing
those edges into 10 sets of training and testing
edges. We apply the link prediction methods to
this second layer of cross-validation sets.

For example, consider network SC. In the previ-
ous section, we created 10 sets of training edges.
Call these sets SC1, SC2, ..., SC10. For each SCi,
metric RAEdge1 produces some fraction improve-
ment fi over metric RA when evaluated on the
corresponding set of test edges (the ratio of the
RAEdge1 score to the RA score is approximately
6 on average, but varies for each SCi). For each
SCi, we create 10 more sets of training edges, SCi,1,
..., SCi,10. For each SCi,j , metric RAEdge1 gives
some fractional improvement fi,j over metric RA
when tested on the corresponding set of test edges.
For each SCi, we calculate the average fi,j over all
values j of fi,j .

We then plot fi against fi,j for all values i, all
networks, and all enhanced metrics. Results are
shown in Figure 1. The purpose of this experiment
is to show that fi,j is strongly related to fi:

Figure 1: fi,j vs. fi

thus, to select a metric for some network, one can
observe that metric’s cross-validation performance
on subsets of the network.

We see that there is a fairly strong relationship
between each fi and fi,j . In particular, when fi
is extremely high (as in the case of network SC),
fi,j is also very high, and vice versa.

These results give guidance to users looking to ap-
ply these methods to real data. Although no met-
ric is best for every network, one can simply per-
form cross-validation on that network to determine
whether a particular metric is likely to be successful
when applied to the complete data.

8.2 Metric Selection through Comparison
of Existing Edges and Non-Edges In addi-
tion to performing the cross-validation method
of metric selection described above, one can also
use the existing data to compare pairs of nodes
that are connected and pairs of nodes that are
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Figure 2: Plots of CNEdge1− CN vs. CN . The top row contains values for pairs of nodes that are connected,
and the bottom row contains values for pairs of nodes that are not connected.

not connected. In this experiment, for every
training network, we generate a list of all pairs
of nodes (u, v) that share at least one neigh-
bor. For some of these pairs, u and v are con-
nected, and for other pairs, they are not. For
each pair in the list, we calculate the value of the
CN(u, v) and CNEdge1(u, v) metrics. We then
plot CNEdge1(u, v)−CN(u, v) vs. CN(u, v), and
determine whether the CNEdge1(u, v)−CN(u, v)
values differ significantly between pairs of nodes
that are connected and not connected, that have
the same CN(u, v) value.

On Grad and Amazon, CNEdge1 performed worse
than CN , and on SC and HS, CNEdge1 outper-
formed CN . To save space, we present the plots
for only these networks in Figure 2. In Figure 2,
the top row contains the plots for connected pairs
of nodes, and the bottom row contains the plots for
un-connected pairs of nodes. We limit the range of
CN and CNEdge1−CN values that we consider,
and consider only those pairs of nodes that had
high CN or CNEdge1 values, because these pairs
of nodes are the ones that effect precision scores (as
precision only considers the most likely edges). In
this case, we consider the top e pairs of nodes as
measured by either CN or CNEdge1, where e is
the number of edges in the test set. For each plot,
we calculate the best-fit line.

From this figure, we quickly reach several conclu-
sions. First, for those networks (SC and HS) on
which CNEdge1 outperformed CN , the slope of
the best-fit line is significantly higher for the con-
nected nodes than for the un-connected nodes (this
is especially true for SC). This indicates that con-
nected pairs of nodes tend to have much higher
CNEdge1 values than un-connected nodes with the
same CN value, and so CNEdge1 does a good
job in discriminating between connected and un-
connected node pairs. In contrast, on Grad and
Amazon, the slopes of the best-fit lines are nearly
identical. This strongly suggests that, for these two
networks, CNEdge1 is unlikely to outperform CN
(as is indeed the case).

Note also that for HS and SC, there are relatively
few pairs of connected nodes that have very high
CN values and low CNEdge1−CN values (along
the x-axis). This is particularly apparent for HS,
which has no pairs of connected nodes along the
x-axis with CN greater than approximately 70.
In contrast, there are many pairs of un-connected
nodes in this location. Conversely, for Amazon and
Grad, the plot containing connected pairs has many
elements with high CN and CNEdge1− CN = 0.

This method of comparing plots is a simple way to
determine whether the incorporation of community



information is likely to be useful, and unlike the
earlier cross-validation method, does not require
reapplication of community detection methods.

9 Conclusion and Future Work

We have showed that enhanced local similarity met-
rics often outperform their associated base metrics.
Averaged over all 10 networks, enhanced metrics
CN1, CNEdge1, RA1, and RAEdge1 had higher
precision scores than their corresponding base met-
rics, and similar AUROC scores. Although no sin-
gle metric was best for every network, we showed
that one can perform cross-validation or compare
metric values for existing pairs of connected and
un-connected nodes to determine whether a partic-
ular method is likely to succeed on a given network.

Future directions for this problem might focus on
other ways to determine which community detec-
tion method is best suited for a particular network.
This problem is naturally related to the problem of
determining which community detection method is
best suited for finding communities within a net-
work. A related problem is that of determining
which base local similarity metric is best for a par-
ticular network. Can one determine which metric
to use based on features of the network?
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