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Abstract

In many online social networking platforms, the partici-
pation of an individual is motivated by the participation
of others. If an individual chooses to leave a platform,
this may produce a cascade in which that person’s friends
then choose to leave, causing their friends to leave, and
so on. In some cases, it may be possible to incentivize
key individuals to stay active within the network, thus
preventing such a cascade. This problem is modeled
using the anchored k-core of a network, which, for a
network G and set of anchor nodes A, is the maximal
subgraph of G in which every node has a total of at
least k neighbors between the subgraph and anchors. In
this work, we propose Residual Core Maximization

(RCM), a novel algorithm for finding b anchor nodes so
that the size of the anchored k-core is maximized. We
perform a comprehensive experimental evaluation on
numerous real-world networks and compare RCM to vari-
ous baselines. We observe that RCM is more effective and
efficient than the state-of-the-art methods: on average,
RCM produces anchored k-cores that are 1.65 times larger
than those produced by the baseline algorithm, and is
approximately 500 times faster on average.

1 Introduction

The participation of a person in social networking
platforms is often motivated by the participation of
others. People take part in such platforms in order to
engage with others; and in return, they produce content
that appeals to others. In other words, people’s incentives
for participation on a platform depend partially on the
number of people to whom they can reach. When these
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Figure 1: An anchored k-core example. The green nodes
form a 3-core. If the red node is anchored, the entire
graph becomes an anchored 3-core.

incentives are low, people may leave the platform. This
decreased participation may affect the participation of
others, further decreasing the incentives for participation.
Considering the social-networking platform as a complex
network among people, locally decreased participation
may cause a cascading exodus from the platform. Finding
(and incentivizing) the critical individuals whose active
participation are key to the larger participation in the
network is an essential problem.

Motivated by this problem, we study the anchored
k-core problem. The k-core of a graph is the maximal
subgraph such that all nodes within the subgraph have
degree at least k [26]. In the anchored k-core problem [5],
one seeks to find a set of nodes to ‘anchor,’ or retain
within the anchored k-core, even if their degree within
the k-core subgraph is less than k: other nodes in the
anchored k-core must thus have at least k connections
either to other nodes in the subgraph or to the anchors.
The objective of the anchored k-core problem is to
maximize the size of the resulting anchored k-core [6],
in hopes of preventing a cascading exodus. An example
is given in Figure 1. Here, the green nodes are in the
3-core, and if the red node is anchored, each blue node
will have 3 neighbors within the subgraph, so the entire
graph becomes an anchored 3-core.The anchored k-core
problem is known to be NP-hard for k > 2 [5].

The algorithmic challenge behind the anchored k-
core problem lies in the ability to foresee cumulative
effect of groups of anchor nodes, not just individual
nodes. It is possible that the addition of the first few
anchor nodes make no difference, but the addition of
one more anchor makes a drastic difference. A good
algorithm should be able to foresee the big future pay-off
even when the immediate benefits are small.
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We propose Residual Core Maximization (RCM),
a novel algorithm for the anchored k-core problem. RCM
selects anchors based on two measures – Anchor Score
and Residual Degree. If the number of anchors needed to
convert a connected component is more than the anchor
budget available, the anchors are selected based on the
anchor score. Otherwise, the anchor selection depends
on the residual degree.

The contributions of this paper are as follows:
1. We propose Residual Core Maximization, a

novel algorithm for selecting anchor nodes to maxi-
mize the size of the anchored k-core.

2. We demonstrate that across various real social net-
work datasets, RCM outperforms existing algorithms
by finding an average of 1.65 times more followers1,
while also being 500 times faster.

3. We experimentally show that the RCM solutions
values are close to the optimal solution values, while
being multiple orders of magnitude faster.
All datasets used are publicly available, and we

provide source code for RCM.2

2 Related Work

There has been extensive work on characterizing and
analyzing the k-core decomposition of networks. We refer
the reader to [24] for a more detailed survey.

2.1 k-core Decomposition Seidman defined the k-
core of a graph as the maximal connected subgraph
in which each node is connected to at least k other
nodes [26] in the subgraph. The maximum k such that
a node belongs in that k-core is called the coreness or
core number of that node. Matula and Beck proposed a
method for finding the k-cores in a graph [19]. Batagelj
and Zaversnik proposed an efficient algorithm to find
the k-core decomposition, in which nodes of degree less
than k are iteratively removed until none are left [4].

The k-core decomposition has been used in numerous
applications, including network visualization [2, 29, 31],
studying the topology of large networks (such as the
Internet) [3, 7], accelerating community detection [22],
and studying the resilience of communities [10].

Laishram et al. proposed a measure for the resilience
of the k-core structure and a method of inserting edges
to improve the resilience [16]. Medya et al. [20] also
studied the resilience of k-cores from a game-theoritic
perspective. In [27], Shin et al. developed a method
to find anomalous nodes in a social network based on
their coreness and degree. In [1, 15, 18], the k-core

1The followers are the nodes (excluding anchors) that are not
in the k-core originally, but are in the anchored k-core.

2https://github.com/rlaishra/RCM/

decomposition is used to identify influential spreaders in
social networks.

There has been a great deal of interest in k-core
decomposition in large graphs. In [8, 14], researchers
proposed out-of-core algorithms for k-core decomposition
on large graphs, and in [21], distributed algorithms
are introduced. For dynamic graph, various methods of
maintaining the k-core structure in the case of streaming
data has also been proposed [23, 17, 30, 9].

There has been a lot of works on extending the
notion of k-cores to other network settings. Sariyuce et
al. generalized k-cores to higher order structures [25], and
Giatsidis et al. adapted the idea of k-cores to directed
and weighted graphs [11, 12].

2.2 Anchored k-core Problem The anchored k-
core problem was introduced by Bhawalkar et al. in
2012 [5]. The problem was inspired by the observation
that a user in a social network is motivated to stay
only if her neighborhood meets some minimal level of
engagement: in k-core terms, she will stay if k friends
are also in the network. Bhawalkar et al. defined the
anchored k-core as the subgraph that is computed using
the usual k-core decomposition algorithm, but with
the modification that selected ‘anchor’ nodes are not
deleted during the process. These anchored nodes may
represent, for example, nodes that are recruited to remain
active in the network, even if their friends are inactive.
The anchored k-core problem, then, is the problem of
selecting a specified number b anchor nodes such that the
number of nodes in the anchored k-core is maximized.
Bhawalkar et al. showed that for a general graph the
anchored k-core problem is solvable in polynomial time
for k ≤ 2, but is NP-hard for k > 2 [6].

Zhang et al. proposed a greedy algorithm, called
OLAK, for the anchored k-core problem [28]. OLAK oper-
ates over b iterations, where b is the maximum number
of anchor nodes allowed. In each iteration, a node that
is not in the anchored k-core but which would generate
the largest number of followers if anchored is selected as
the next anchor. Because only a single anchor node is
considered at a time, and only nodes from the (k − 1)-
shell3 can become followers when anchoring a single node,
OLAK considers only follower nodes from the anchored
(k − 1)-shell during each iteration.

Zhou et al. [32] studied a problem that is close
to the anchored k-core problem – which edges should
be added to maximize the size of the k-core. However,
this is fundamentally different from the anchored k-core
problem because the graph cannot be modified in the
anchored k-core problem.

3The k-shell is the subgraph of the k-core \ (k − 1)-core.
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Figure 2: In this example, we seek to maximize the size
of the anchored 6-core. The red nodes are the candidate
anchors, the green nodes are in 4-shell and blue nodes
are in 5-shell. The edges between the 6-core and the
rest of the nodes are shown with dashed lines and the
number represents the number of edges.

3 Problem Definition

Consider a graph G = 〈V,E〉, and let N(u) denote the
set of neighbors of node u in G. The k-core of G is the
maximal subgraph Gk = 〈Vk, Ek〉 such that every node
in Vk has at least k neighbors in Vk [4]. We use Gk to
refer to the subgraph induced by Vk = V \ Vk.

The k-core of a graph can be computed through a
‘peeling’ technique in which nodes with degree less than
k are iteratively removed until all surviving nodes have
degree at least k in the remaining subgraph.

Consider A ⊂ Vk. The anchored k-core of G with
anchors A is the maximal subgraph Gk,A = 〈Vk,A, Ek,A〉
such that ∀u ∈ Vk,A one of the following holds:
(1) u is an anchor node, i.e., u ∈ A,
(2) u has at least k neighbors in Vk,A, i.e., |N(u) ∩

Vk,A| ≥ k.
The anchored k-core of a graph can be computed

like the usual k-core – but with the nodes in A kept
in the graph even if their degree is below k. In many
applications, there is a bound on the number of anchor
nodes. We denote this anchor budget by b. The ‘followers ’
are the non-anchor nodes that are not in the k-core
but are in the anchored k-core, and are denoted by
F (G, k,A), where

F (G, k,A) = Vk,A \ (Vk ∪A).(3.1)

For brevity, we will use F (A) when the G and k are
clear from the context.

The anchored k-core problem was introduced in [6]
as follows: If we are given an anchor budget of bm, which
nodes should be anchored so that the number of followers
is maximized? Formally, the objective is to find the set
A∗ such that

A∗ = arg max
A⊆[Vk]

b

|F (k,A) |(3.2)

where
[
Vk
]b

=
{
X ⊆ Vk : |X| = b

}
.

The state-of-the-art methods for the anchored k-core
problem are greedy methods that, in each step, select the

anchor that brings in the most followers at each step. To
demonstrate the shortcomings of this greedy approach,
consider the example in Figure 2. In this example, we seek
to maximize the size of the anchored 6-core by anchoring
2 nodes. The red nodes are the candidate anchors, the
green nodes are in the 4-shell, and the blue nodes are in
the 5-shell. For visual clarity, the edges between the 6-
core and the rest of the nodes are represented by dotted
lines, and the number represents the number of edges. It
is clear that a greedy approach will select nodes c and d
as anchors, resulting in 2 new followers. However, had
a and b been anchored, there would have been 3 new
followers.

4 Methodology

In this paper, we propose an anchor node selection
algorithm called Residual Core Maximization (RCM). We
describe the components that makes up RCM and how
they combine together to select the anchor nodes in this
section.

4.1 Candidate Followers and Anchors We begin
by deriving the necessary conditions for a node to be
a candidate follower from the definition of k-core, and
then use that to find the candidate anchors.

By definition of anchored k-core, it is easy to see
that for v ∈ Vk,A, if |N(v)| < k, it is not possible for v
to become a follower. So, the set of candidate followers
is given by,

Cf
def
= {vf ∈ Vk,A : |N(vf )| ≥ k}.(4.3)

Next, let A′ ⊆ Vk,A denote the additional anchor
nodes selected. Then for va ∈ A′, if N(va) ∩ Cf = ∅, it
is not possible for va to bring in new follower (either by
itself or combination with other nodes). For efficiency
we should not select such nodes as anchors. So the set
of candidate anchors is,

Ca
def
= {va ∈ Vk,A : |N(va) ∩ Cf | > 0}(4.4)

and we should ensure that A′ ⊆ Ca. We can discard any
nodes not in Cf ∪ Ca from consideration.

4.2 Residual Degree For nodes in Cf , we need to
quantify how ’far’ they are from becoming followers. So,
we introduce the Residual Degree of a node vf ∈ Cf
given anchor nodes A as,

δ (v|A)
def
= k − |N(v) ∩ Vk,A|.(4.5)

After new anchors A′ are added, if δ (vf |A ∪A′) ≤ 0,
it is easy to see from the definition of anchored k-
core that vf should also be in the anchored k-core
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Algorithm 1 FindResidualCore()

1: Gf ← Subgraph of G induced by Cf

2: G ← Connected components in Gf

3: G ← {S ∈ G : (∃v ∈ S : N(v) ∩A′ 6= ∅)}
4: X ← Nodes in all the subgraphs in G
5: repeat
6: Y ← {v ∈ X : |N(v) ∩ (X ∪A′) | < δ(v)}
7: X ← X \ Y
8: until Y = ∅
9: return X

with anchors A ∪ A′. We can also see that δ (vf |A) ≥
δ (vf |A ∪A′) for any A′. So, intuitively the residual
degree tells us how ‘far’ a candidate follower is from
becoming a follower – nodes with lower values can be
converted to new followers more easily. In the rest of
the discussion, for brevity, we will denote the residual
degree with δ(vf ) if A is clear from the context.

4.3 Residual Core When nodes A′ ⊆ Ca are added
to A an additional anchors, which nodes in Cf become
followers? To answer this we define the Residual Core
subgraph. The residual core subgraph (with respect to
the new anchors A′) is defined as the maximal subgraph
such that every node in the subgraph has at least as
many neighbors in the subgraph or A′ as its residual
degree. We denote the residual core of A′ with R∗A′ .

The residual core subgraph gives us all the new
followers due to A′ (Lemma 4.1), and it can be found
efficiently as described in Algorithm 1.4

Lemma 4.1. F (A ∪A′) \ F (A) = R∗A′ .

Proof. Let Y = F (A ∪A′) \ F (A). Consider v ∈ Y .
Then, |Vk,A∪A′ ∩N(v)| ≥ k and |Vk,A ∩N(v)| < k. We
know that, Vk,A∪A′ = Vk,A ∪ A′ ∪ Y , where Vk,A and
A′ ∪ Y are mutually exclusive by definition. So ∀v ∈ Y ,

|Vk,A∪A′ ∩N(v)| ≥ k
| (Vk,A ∪A′ ∪ Y ) ∩N(v)| ≥ k

| ((A′ ∪ Y ) ∩N(v)) | ≥ δ (v|A) .

By definition of residual core, we can now see that
Y is the residual core with anchors A′. Therefore,
F (A ∪A′) \ F (A) = R∗A′ .

4.4 Bounds on the Number of Anchors Let Gf
be the graph induced from G by the nodes in Cf , and let
G be the set of connected components in Gf . If nodes in
G′ ∈ G become followers, they cannot effect the residual
degree of nodes in other components. Thus, we can
consider each component separately.

4Refer to the supplemental material for the proof of the
correctness of the algorithm.

Figure 3: The nodes inside the box form G′, and the
number represents their residual degrees. The red nodes
are the nodes in Ca \ Cf . The green nodes and blue
nodes are V ′i and V ′o respectively.

For G′ ∈ G, let V ′i be the set of nodes in G′ that can
become follower without relying on nodes not in G′ (if
the other nodes become followers), and let V ′o be the set
of nodes in G′ that need anchors not in G′ to become
followers. That is, V ′i = {v ∈ V ′ : |N(v,G′)| ≥ δ(v)} and
V ′o = V ′ \ V ′i where V ′ is the set of nodes in subgraph
G′, and N(v,G′) is the set of neighbors of v in G′.

If anchors A′ are selected such that all the nodes
in V ′o become followers, G′ become a residual core, and
converts V ′i to followers (Lemma 4.1).

As an example, consider Figure 3. In this example,
the G′ is indicated by the rectangle, and the numbers
inside the nodes are the residual degrees of the nodes.
The red nodes are nodes in Ca. We can see that the green
nodes have at least δ(∗) neighbors within G′; but the
blue nodes need anchors from among the red nodes. So,
the green and blue nodes form V ′i and V ′o , respectively. If
the blue nodes are converted to followers, the G′ becomes
a residual core.

By construction, the only neighbors of V ′o not in G′

are in Ca \ Cf . It can be seen that each node v ∈ V ′o
needs δ(v)− |N(v,G′)| anchors from Ca \Cf to become
followers. We denote it by δ′ (v). Then consider,

β⊥ (G′)
def
= max

v∈V ′o
δ′(v).

β> (G′)
def
=
∑
v∈V ′o

δ′(v).

β∗ (G′)
def
= min

v∈V ′o
δ′(v).

If the remaining anchor budget is b′, we have:
• b′ ≥ β> (G′). All the nodes in C ′ can be converted

to followers.
• b′ < β⊥ (G′). The budget is not enough to convert

all the nodes in G′ to followers. But it might be
possible for some nodes to become followers.

• b′ < β∗ (G′). No node in G′ can become a follower.
For a given component, depending on these case, we

need different anchor selection strategies.

4.5 Residual Anchor Selection If the anchor bud-
get remaining is enough to convert all nodes in G′ to
followers, we need to select the minimum number of an-
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Algorithm 2 ResidualAnchors()

1: A′ ← ∅
2: T ← V ′o
3: while T 6= ∅ do
4: v ← arg max

u∈Ca\(Cf∪A′)
|N(u) ∩ T |

5: A′ ← A′ ∪ {v}
6: T ← {u ∈ T : δ′(u,G′) > |N(u) ∩A′|}
7: end while
8: return {(A′, V ′)}

chors needed. Since the nodes in V ′i already have enough
neighbors in G′, it is enough to consider only V ′o .

We thus need to select the minimum number of
anchors from Ca \ Cf such that each node v ∈ V ′o is
connected to at least δ′(v) anchors.

Finding the minimum number of residual anchors
is NP-hard,5 and so we propose a heuristic algorithm
for this task (Algorithm 2). At each step, the algorithm
selects the node from Ca \ (Cf ∪A′) that has the most
neighbors in T , and adds it to A′. Here T is the set of
nodes such that all the nodes in T still requires additional
anchors to become followers.

4.6 Anchor Score based Anchors Selection If
the anchor budget is not enough to convert all the
nodes in G′ to followers, we want to convert as many as
possible. To quantify the quality of a candidate anchor
node with respect to maximizing the number of followers
we propose a node-level measure called the Anchor Score.
Denote all the nodes in G′ by C ′f , and consider C ′a such
that C ′a = {v ∈ Ca : N(v) ∩ C ′f 6= ∅}.

Then, we define the Anchor Score of v ∈ C ′f ∪C ′a as

α (v)
def
= 1 +

∑
u∈Cf∩N(v)

α(u)

δ(u)
.(4.6)

The intuition is that nodes that are connected to
others with high anchor score and low residual degree are
important themselves. If nodes with high anchor scores
are anchored, this helps in converting its neighbors into
followers, which may themselves also be important.

To calculate the anchor scores of all nodes in C ′f∪C ′a,
we have |C ′f ∪ C ′a| equations:

q = 1 + Dq,(4.7)

where q is the vector of anchor scores, 1 is a vector of
1’s, and D is a matrix such that Di,j = 1

δ(j) if edge (i, j)

exist, otherwise 0.
Depending on the membership of a node in C ′a

and/or C ′f , we have the following conditions:

5Please refer to the supplementary material for the proof.

Algorithm 3 ASAnchors()

1: A′, F ′, S← ∅, ∅, ∅
2: while |A′| < b do
3: Calculate the Anchor Scores α(∗)
4: v ← arg max

u∈C′
f
∪C′a

α(u)

5: R← FindResidualCore(A′ ∪ {u})
6: A′ ← A′ ∪ {v}
7: F ′ ← F ′ ∪R
8: S← S ∪ {(A′, F ′)}
9: Remove R and v from C′a and C′f

10: Update δ(∗)
11: end while
12: return S

1. v ∈ C ′f \ C ′a. Since C ′f ∩ N(v) = ∅ by definition,
α(v) = 1.

2. v ∈ C ′f ∩ C ′a. In this case, α(v) appears on both
sides of equation 4.7.

3. v ∈ C ′a \ C ′f . Here, v cannot appear on the right of
the equation. So, α(v) is simple to calculate once
the other two cases have been calculated.
To compute anchor scores, we first set the score

for C ′f \ C ′a to 1. We next restrict computation of
Equation (4.7) to only the nodes in C ′f∩C ′a, and calculate
the anchor scores. Finally, we calculate the anchor scores
of C ′a \ C ′f using Equation (4.6) and the previously
calculated anchor scores.

After calculating the anchor scores, the node with
the highest value is selected as the next anchor. The pro-
cess repeats as long as there is budget left. Algorithm 3
describes this process.

4.7 Residual Core Maximization In this section,
we put together the pieces of our proposed algorithm
Residual Core Maximization (RCM). The main idea of
RCM is to divide the graph into multiple connected
components of Cf , and then to find anchors for these
subgraphs separately depending on β> (G′) (Section 4.4).
Algorithm 4 describes RCM in detail.

The first step is to generate G, the connected
components of the subgraph induced with Cf . RCM

then generates the (anchors, followers) tuples for the
components, denoted by S. This step can be performed
in parallel. Next, we need to find a set A such that,

Ŝ =

{
S′ ⊆ S :

∣∣∣∣∣ ⋃
S∈S′

S[0]

∣∣∣∣∣ ≤ b
}

S∗ =arg max
S∈Ŝ

∣∣∣∣∣⋃
S∈S

S[1]

∣∣∣∣∣ ,
where S[i] denotes the i-the element in the tuple S. This
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Algorithm 4 ResidualCoreMaximization()

1: A, S← ∅, ∅
2: Find Ca, Cf and calculate δ(∗)
3: G ← Connected components in Gf

4: for G′ in G do
5: if β∗ (G′) > b then
6: continue
7: else if β⊥ (G′) > b then
8: S← S ∪ ASAnchors(G′)
9: else if β⊥ (G′) ≤ b then

10: S← S ∪ ResidualAnchors(G′)
11: else
12: S← S∪ ResidualAnchors(G′)
13: S← S ∪ ASAnchors(G′)
14: end if
15: end for
16: A←SolutionSelection(S, b)
17: return A

Algorithm 5 SolutionSelection()

1: A,F ← ∅, ∅
2: while |A| < b do

3: S∗ ← arg max
S∈S

|S[1]\F |
|S[0]\A|

4: S.remove(S∗)
5: if |A ∪ S∗[0]| ≤ b then
6: A← A ∪ S∗[0]
7: F ← F ∪ S∗[1]
8: end if
9: end while

10: return A

problem is close to the set union knapsack problem.6

So, we use a greedy algorithm that selects S∗ ∈ S that

maximizes |S
∗[1]\F |
|S∗[0]\A| , where A and F are the sets of

anchors selected so far and the followers as a result. This
is described in Algorithm 5.

After S∗ (or the approximation) is computed, RCM
selects anchors as, A =

⋃
S∈S∗ S[0]. The source code of

RCM is publicly available.7

Running Time: If Efa is the set of edges in the
subgraph induced from G with the nodes Cf ∪ Ca, the
running time of RCM is given by O (|Efa|)8.

5 Experiments

We evaluate the performance of RCM against various
baselines both in finding followers and efficiency in doing
that. We also compare to the optimal algorithm described
by Bhawalkar et al. [5] for k = 2.

6The set union knapsack problem is a generalization of the
knapsack problem in which the weight is calculated based on

union of sets rather than sum of numbers [13]. In our problem,

the value is also calculated based on set unions.
7https://github.com/rlaishra/RCM
8Please refer to the supplemental material for details.

Table 1 lists the real-world networks used in our
experiments. These datasets are available at Network
Repository9 and SNAP.10 We consider social, web, and
collaboration networks of various sizes – ranging from a
few thousands to more 1 million edges. All the graphs
are treated as undirected. Unless otherwise stated, we
use only the sequential version of RCM in the following
discussion and results.

5.1 Comparison Against Baseline Algorithms
We consider three baseline algorithms for finding anchor
nodes. The first is OLAK, the current state-of-the-art
algorithm for anchor nodes selection [28]. OLAK greedily
selects one anchor node at a time, and recomputes
the anchored k-core decomposition in each step. OLAK
has been demonstrated to work well on a number of
real-world networks. For fair running time comparison,
we implement OLAK in Python. The second baseline is
Maximum Degree (MD) in which a node from Ca that
has the maximum number of neighbors in Cf is selected
as anchor as anchor at each step. The third baseline is
Random (RND), which selects anchors randomly from Cf .
In all baselines, after an anchor node has been selected,
the new anchor and followers are removed from Ca and
Cf . We set k to the median core number of the network
(given in Table 1) and vary the anchor budget from 50
to 250 in increments of 50. Results for different values
of k are included in the supplementary material.

Figure 4a shows the number of followers for varying
budgets for some selected networks and Figure 4b shows
the followers at b = 250 for RCM and the best baseline
on all networks. RCM, shown in red, clearly outperforms
all the baselines. As expected, the results are closer to
OLAK for lower budgets, but the difference increases for
higher budgets. Among the baselines, no single algorithm
is always the best. The results for all baselines are
in the supplementary material. We observe that RCM

outperform the baselines in all the cases considered.
To compare the runtime efficiency of the various

algorithms, we consider the time to find each follower.
Figure 5a shows the time to to find a follower against the
budget and Figure 5b shows the result for RCM and the
best baseline11 for all the network at b = 250. In all the
cases RCM is much faster than all the baselines. Note that
in many algorithms, the average time to find a follower
drops as the budget increases because the size of Ca and
Cf drops (as nodes become followers and anchors).

5.2 Comparison with Optimal Solution In this
section, we compare the performance of RCM against

9http://networkrepository.com
10https://snap.stanford.edu/data/index.html
11Results for all the baselines are in the supplementary material.
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Network Abbr. |V | |E| kmax kmid |Ca| |Cf | |Efa| |G|
socfb-combined10 FC 4.0× 103 8.8× 104 115 17 1289 501 7029 13
ca-CondMat10 CC 2.3× 104 9.3× 104 25 4 2892 1179 3739 685
ca-HepPh10 CH 1.2× 104 1.1× 105 238 4 1487 634 1901 362
loc-Brightkite10 LB 5.8× 104 2.1× 105 52 2 3288 2365 3004 2006
socfb-Northeastern199 FN 1.4× 104 3.8× 105 43 33 4978 1246 18473 1
socfb-Syracuse569 FS 1.4× 104 5.4× 105 75 46 5522 1417 37698 2
ca-citeseer1 CS 2.2× 105 8.1× 104 86 3 18486 8493 20187 5991
loc-Gowalla10 LG 1.9× 105 9.5× 105 51 3 17890 10263 17706 7479
com-DBLP10 KD 3.1× 105 1.0× 106 113 3 23182 11010 25144 8240
web-Google10 WG 8.7× 105 4.3× 106 44 4 198014 46891 245188 20471
soc-Catster9 SC 1.5× 105 5.4× 106 419 21 5285 2003 8428 1054
soc-Dogster9 SD 4.2× 105 8.5× 106 248 12 20887 8750 26438 5339
soc-TwitterHiggs9 ST 4.5× 105 1.3× 107 125 17 27146 9234 40651 3493
web-Hudong9 WH 2.0× 106 1.4× 107 266 5 82791 40160 83886 29687
web-BaiduBaike9 WB 2.0× 106 1.7× 107 78 3 51659 32501 50222 27735

Table 1: Statistics of the real-world networks used in our experiments. |V | and |E| are the number of nodes and
edges respectively; kmax and kmid are the maximum and median values of the coreness of all the nodes. |Ca| and
|Cf | are sizes of the candidate anchors and followers for kmid. |Efa| is the number of edges in the subgraph induced
with Cf ∪ Ca, and |G| is the number of connected components.
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Figure 4: Number of followers found by RCM and various baselines (at k fixed at the median value). In Figure 4a,
the number of followers against the budget is shown for some selected networks. In 4b, the number of followers at
b = 250 for all the networks considered is shown. Only RCM and the best baseline is shown. We can see that RCM
selects the anchors that result in the largest number of followers in all cases. (Higher values are better.)

the optimal solution. Bhawalkar et al. [5] proposed an
algorithm for finding the optimal solution for k ≤ 2.
We also include OLAK in the comparison. For these
experiments we consider k = 2 and b = 50.

Table 2 shows the comparison between RCM, OPT and
OLAK. In all cases, the number of followers due to RCM

is very close to that found by OPT. The followers due to
OLAK are much fewer in all the networks. Additionally,
RCM is around 100 times faster than OPT.

5.3 Experimental Analysis of RCM In this section,
we evaluate the various aspects of RCM – (a) the contri-
bution of AnchorScore() and ResidualAnchors() to
the overall performance, (b) the speedup due to paral-
lelization, and (c) scalability with network size.

We evaluate the contribution of ResidualAnchors()

and ASAnchors() by designing versions of RCM that
use only one of them. We denote these as RCM-RC and
RCM-AS respectively. Results are shown in Figure 6a.
We observe that results are clearly better when we use
both ResidualCore() and ASAnchors(). Additionally,
RCM-RC outperforms RCM-AS in two out of the three
networks. RCM-AS outperforms RCM-RC in the network
FS because |G| = 2 and the budget is not enough to
completely convert any component to followers.

To evaluate the speedup due to parallelization
(Section 4.7), we limit the number of CPU cores available
and compare the computation time.12 Figure 6b shows
the results of this experiment. In most networks RCM

achieves significant speedup with CPU cores. However,

12The k value is given in Table 1 and b = 100.
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Figure 5: Average time to find a follower by RCM and baselines. In Figure 5a, the the time at different budgets is
given for selected networks, and in Figure 5b the time at b = 250 is shown for RCM and the best baseline. The
value of k is given in Table 1. RCM is much faster than the baselines in all the cases. (Lower values are better.)
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Figure 6: Experimental results for analysis of RCM. Figure 6a shows the contribution of different parts of RCM,
Figure 6b shows the speedup due to parallel computation, and Figure 6c shows the running time against |Efa|.

Network k b Alg. Followers Time (ms)

KD

RCM 114 1.2× 102

2 50 OPT 115 1.9× 104

OLAK 97 1.5× 104

LG

RCM 150 3.5× 102

2 50 OPT 152 2.9× 104

OLAK 133 9.6× 103

WG

RCM 180 3.9× 103

2 50 OPT 186 2.6× 105

OLAK 95 6.2× 104

Table 2: Comparison of RCM, OPT and OLAK. Observe that
in all the cases, RCM is very close the OPT while being
multiple magnitudes faster.

in the case of FS network there is no speedup. This is
because there are only two components – a large one
and a very small one, making parallelization ineffective.

As described in Section 4.7 the runtime of RCM is
given by O (|Efa|), where Efa is the set of edges in
the subgraph induced by Cf ∪ Ca. Figure 6c shows
the running time of RCM against |Efa| for all the
networks in Table 1. As expected, the observed runtime
is approximately linear in |Efa|.

6 Conclusions

In tis paper, we addressed the anchored k-core problem:
given an anchor budget, what is the set of anchor
nodes that should be selected to maximize the number of
followers? We proposed a method, called Residual Core
Maximization (RCM). Through extensive experimental
analysis, we demonstrate that RCM performs significantly
better than the state-of-the-art algorithms. On average,
RCM finds 1.65 times the followers found by the best
baseline method, while being 500 times faster. We also
compared RCM against the optimal solution (for k = 2)
and observed that the number of followers found by RCM

is very close to the optimal; and the time to find each
follower is around 100 times faster.
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