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ABSTRACT
The concept of k-cores is important for understanding the global
structure of networks, as well as for identifying central or important
nodes within a network. It is often valuable to understand the
resilience of the k-cores of a network to attacks and dropped edges
(i.e., damaged communications links).

We provide a formal definition of a network’s core resilience,
and examine the problem of characterizing core resilience in terms
of the network’s structural features: in particular, which structural
properties cause a network to have high or low core resilience? To
measure this, we introduce two novel node properties, Core Strength
andCore Influence, whichmeasure the resilience of individual nodes’
core numbers and their influence on other nodes’ core numbers.
Using these properties, we propose the Maximize Resilience of k-
Core (MRKC) algorithm to add edges to improve the core resilience
of a network.

We consider two attack scenarios – randomly deleted edges
and randomly deleted nodes. Through experiments on a variety of
technological and infrastructure network datasets, we verify the
efficacy of our node-based resilience measures at predicting the
resilience of a network, and evaluate MRKC at the task of improving a
network’s core resilience. We find that on average, for edge deletion
attacks, MRKC improves the resilience of a network by 11.1% over
the original network, as compared to the best baseline method,
which improves the resilience of a network by only 2%. For node
deletion attacks, MRKC improves the core resilience of the original
network by 19.7% on average, while the best baseline improves it
by only 3%.
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1 INTRODUCTION
k-cores have emerged as an important concept for understanding
the global structure of networks, as well as for identifying ‘central’
nodeswithin a network. Thek-core [21] of a network is themaximal
subgraph such that every node has at least k neighbors. The core
number of a vertex is defined to be the largest k value such that
there exists a k-core that contains the vertex, and nodes in the
higher cores are considered to be more central within the network.
k-cores represent cohesive subgroups of nodes, and have been
used in a broad variety of important applications, such as studying
the structure of internet networks [8], predicting the function of
proteins [2], or understanding the evolution of networks.

There are many applications that depend on the core structure
of a network (Section 3.1). Thus, it is valuable to understand the
resilience of the network’s core structure to the attacks where nodes
and edges are deleted (i.e., damaged routers or communications
links). We define the (r ,p)-core resilience of a network G , denoted by
R
·(p )
r (G ), as the correlation between the core number rankings of the

top r% nodes before and afterp% edges or nodes are removed at random.
R
·(p )
r (G ) gives us rich information about the network: intuitively,

it measures whether the core ordering of the top r% core number
nodes in the network remains roughly the same even if that network
is attacked. Because the core number is a measure of centrality,
(r ,p)-core resilience determines whether the most central nodes
continue to be the most central nodes. We additionally present an
aggregate (r ,pl ,pu )-core resilience measure (R ·(pl ,pu )r (G )), defined
as the mean R ·(p )n (G ) as we vary p from pl to pu .

We examine the problem of characterizing the core resilience
in terms of the network’s structural features: in particular, which
structural properties cause a network to have high or low core re-
silience? To measure this, we introduce two novel node properties:
Core Strength and Core Influence. We show that across real-world
networks from a variety of domains, core strength and core influ-
ence are effective predictors of the core resilience of a network
(Section 4.5). This allows designers or operators of infrastructure,
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Figure 1: Adding edges to increase the resilience of the k-
cores of the TECH_Router network against deleted edges.
The MRKCmethod is shown in red, and outperforms the base-
line methods.

computer, or other technological networks to evaluate the strength
of the network before an attack occurs.

Based on these features, we propose an algorithm, called Maxi-
mize Resilience of k-Core (MRKC), to determine which edges should
be added to a network to improve its resilience, under the constraint
that the nodes’ core numbers do not change. This has important
applications in complex networks such as technological networks,
where nodes can drop randomly and without warning, and we wish
to improve the resilience of the network while preserving its overall
core structure. We show that MRKC effectively inserts edges to make
the network more resilient against such attacks. We observe that
MRKC improves the core resilience by 11.1% and 19.7% against edge
deletion and node deletion, respectively, whereas the best baseline
can improve it by only 2% and 3%. Figure 1 presents the compar-
ison of MRKC and baseline methods regarding the core resilience
improvements against edge deletions in the TECH_Router network.
We present our results in more details, and for other networks, in
Section 5.3.

Our contributions can be summarized as follows:
(1) We propose the core resilience measure for characterizing

the resilience of a network’s core structure when nodes and
edges are dropped.

(2) We introduce two simple node-basedmeasures, core strength
and core influence, to quickly and efficiently predict a net-
work’s core resilience.

(3) We present a novel algorithm for adding edges to a network
to increase its core resilience, while keeping the core num-
bers unchanged.

(4) We perform experiments on a variety of real-world network
datasets, and demonstrate that our algorithm outperforms a
set of baseline methods at the task of increasing a network’s
core resilience.

2 RELATEDWORK
In this section, we describe previous literature on core decomposi-
tion and evaluation of the k-core’s resilience in real-world networks.

Core decomposition: Erdős and Hajnal [11] described the first
k-core related concept in 1966, defining the degeneracy of the graph

as the maximum core number of a vertex in the graph. Matula intro-
duced the min-max theorem [17] for the same concept, but in the
context of graph coloring. Roughly simultaneously, Seidman [21]
and Matula and Beck [16] defined the k-core subgraph as the maxi-
mal connected subgraph where each vertex has at least degree k .
Seidman stated that k-cores are good seedbeds that can be used to
find further dense substructures, but did not provide a principled
algorithm for finding k-cores [21]. Matula and Beck [16], on the
other hand, give algorithms for finding the core numbers of vertices,
and also finding all the k-cores of a graph (and their hierarchy) by
using these core numbers, since there can be multiple k-cores for
the same k value.

Batagelj and Zaversnik introduced an efficient implementation
that uses the bucket data structure to find the core numbers of
vertices [6]. In contrast to previous work [16, 21], they defined the
k-core as a possibly disconnected subgraph. Core decomposition
has attracted a great deal of interest in the recent years, finding
use in applications such as visualization [3] and analysis of the
internet topology [5]. Thanks to the the practical benefit and linear
complexity of the k-core decomposition, there has been a great deal
of recent work in adaptingk-core algorithms for different data types
or setups. Cheng et al. [9] introduced the first external-memory
algorithm, and Wen et al. [23] and Khaouid et al. [15] provided
further improvements in this direction. Giatsidis et al. adapted the
k-core decomposition for weighted [13] and directed [12] graphs.

To handle the dynamic nature of the real-world data, Sariyuce
et al. [20] introduced the first streaming algorithms to maintain
the k-core decomposition of a graph upon edge insertions and
removals. Motivated by the incomplete and uncertain nature of the
real network data, O’Brien and Sullivan [18] proposed newmethods
to locally estimate core numbers (K values) of vertices when the
entire graph is not known, and Bonchi et al. [7] showed how to
efficiently perform the k-core decomposition on uncertain graphs,
which has existence probabilities on the edges.

Core resilience: There are only a few works that study the sen-
sitivity of the core decomposition. Most closely related to our work
is the study by Adiga and Vullikanti, investigating the robustness
of the top cores under sampling and in noisy networks [1]. They
reported that the success in recovering the top cores under sam-
pling and noise exhibits non-monotonic behavior with the amount
of samples and noise. Another related study is by Zhang et al. [24],
who recently proposed the collapsed k-core problem to find the
critical vertices. For a given k value and a budget b, they introduced
algorithms to delete b (critical) vertices to get the smallest k-core (in
size). In our work, we follow a more general approach and quantify
the resilience of the core numbers, and the impact of the neighbor
vertices on the stability. In addition, we propose edge insertion
heuristics to strengthen the core numbers while preserving the
existing core decomposition.

3 CORE RESILIENCE
In many network applications, we may encounter the problem of
deleted edges or nodes. For example, in technological networks,
edges may be lost due to dropped communication links, and in
router networks, nodes might drop due to routers being turned off.
It is thus valuable to understand the resilience of the k-core of the
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(a) Results for anomaly detection.
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(b) Results for community detection.

Figure 2: Similarity between anomalies (Figure 2a) and communities (Figure 2b) found in the full network G and the sample
G ′ for different real-world networks. The x-axis is the Core Resilience (Rn (0,50)50 (G )) of the different networks against node
deletion, and the y-axis is the Jaccard Similarity. As expected, in the networks with high Core Resilience, the results on the
sample is more similar to that on the full network in general.

network to missing edges and nodes. In this section, we introduce
the concept of core resilience, which quantifies the degree to which a
network’s core structure changes when nodes or edges are deleted
uniformly at random.

We define the (r ,p)-core resilience of a network G as the rank
correlation between the top r% nodes (as ranked by core number) in
the original network to that of the network after p% of the the edges
or nodes have been removed uniformly at random. We denote the
(r ,p)-core resilience of a graphG to edge deletion by Re (p )r (G ), and
that due to node deletion by Rn (p )r (G ). We will use R ·(p )r to refer to
(r ,p)-core resilience in general. Let G = ⟨V ,E⟩ be a network, and
letGp represent the network obtained removing p% of the edges (or
nodes) from G randomly. Let the top r% nodes (by core numbers)
in G be denoted by Vr . Define a setM

p
r such that,

M
p
r =

{(
K (u,G ),K (u,Gp )

)
: u ∈ Vr

}

whereK (u,G ) is the core number of nodeu in networkG . (If a node
has been deleted, its core number in Gp is 0.)

Then, the (r ,p)-core resilience of G is given by,

R
·(p )
r (G ) = τb

(
M
p
r
)

(1)

where τb (·) is the Kendall’s tau-b rank correlation. (We can replace
τb (·) by any other measures of rank correlation.)

While R ·(p )r gives rich, detailed insight into the core resilience
of the different cores of the network at different levels of edges
or nodes deletion, in some applications it may be preferable to
use a simpler measure. We thus define an aggregate measure, the
(r ,pl ,pu )-core resilience. We define the (r ,pl ,pu )-core resilience of a
network as the mean (r ,p)-core resilience as we vary p from pl to pu .
We denote the (r ,pl ,pu )-core resilience of G by R ·(pl ,pu )r (G ).

R
·(pl ,pu )
r (G ) =

∫ pu
pl
R
·(x )
r (G )dx

pu − pl
(2)

In practice, we approximate the integral in Equation 2 by a summa-
tion with step size 1.

It should be noted that there are a number of graph robustness
measures, but the concept of core resilience specifically concerns
the k-core structure of the network, and so is not directly related
to these existing measures. To verify this we compared the Natu-
ral Connectivity [14] to the Core Resilience of various real-world
networks, and did not observe any significant correlation. Due to
space limitations, we do not include these results.

Because it is not always practical to compute the core resilience
by Equation 1, it is of great practical interest to determine whether
a network will have high or low resilience based on its structural
features. In Section 4, we thus address the problem of characterizing
the core resilience of a network in terms of quickly-computed
structural properties.

3.1 Motivating Applications
The concept of Core Resilience is helpful in applications where the
k-core structure of the network under missing edges or nodes is
important. In this section we will discuss two such applications,
anomaly detection and community detection, which use k-cores on
sampled data.

Assume that we have a network G = ⟨V ,E⟩ and a subgraph
G ′ = ⟨V ′,E ′⟩, where G ′ is the result of random walk on G.

If we perform anomaly detection [22] or community detection
[19] onG ′, how well do the results onG ′ reflect the true anomalies
and communities in G? Because these applications make use of the
k-core structures, we expect the results to more closely match that
of the original graph if the original graph has high core resilience.

We verify this experimentally on multiple real-world networks,
and the sample we use is generated by a random walk with half the
number of nodes in the network as the budget.

3.1.1 Anomaly Detection. In this application, we perform anom-
aly detection on the full network G using the CORE-A method
proposed in [22] to find the anomalous nodes Vα . This method
operates on the intuition that nodes with high core numbers also
have high degrees. So for a given node, the difference between the



ranking in terms of the degree and core number (referred to as
dmp in [22]) should be fairly small. However, anomalous nodes
(for example, someone in a social network who paid to get more
followers) deviate significantly from this pattern. By looking at
the dmp values of the nodes, the anomalies are identified in the
CORE-A algorithm.

We find anomalies in the subgraph G ′ with the same method,
and refer to the set of these anomalies as V ′α . We then use Jaccard
Similarity to determine how close the result on G ′ is to that on G.

Jα (Vα ,V
′
α ) =

��Vα ∩V ′α ��
��(Vα ∩V ′) ∪V ′α ��

We present results in Figure 2a. We can observe that the anom-
alies found in the sample are more similar to those in the full
network for networks with high core resilience.

3.1.2 Community Detection. By finding a central region of the
network, k-cores can be used to accelerate community detection.
We perform community detection using the method proposed in
[19] and the Louvain method on the original networkG . We denote
the communities inG byC . Then, we perform community detection
with the same method on G ′, to get the communities C ′.

We compute the similarity between C and C ′ as the mean Jac-
card Similarity between the communities in C ′ to its best match
community in C .

Jc (C,C
′) =

1
|C ′ |

∑
c ∈C ′

|c ∩ β (c,C ) |

|c ∪ (β (c,C ) ∩V ′) |

where β (x ,Y ) is a function that maps the community x to another
community y such that |x ∩ y |, and there are no other x ′ ∈ X that
maps to y.

Figure 2b shows the results of these experiments on community
detection. In the networks with higher Core Resilience, the nodes
that are grouped together in the same community in the sample
are more frequently grouped together in the original communities
as well. The only exceptions to this are two P2P networks, for
which the similarity is low even though they have relatively high
core resilience. This is because there are very few communities
in the original network, but only a single, giant community. So,
β (c,C ) = ∅ for most c ∈ C ′.

These two applications demonstrate that if we know the Core
Resilience of a network, we can use it as an indicator of how much
we should expect core-based observations on incomplete data to
reflect those on the original.

4 CHARACTERIZING CORE RESILIENCE
Directly computing the (r ,p)-core resilience of a network is not
practical in many cases, as it requires repeated k-core decompo-
sition. It is thus valuable to characterize the core resilience of the
network without directly computing the (n,p)-core resilience (and,
as we will see, this characterization allows us to develop an effective
algorithm for improving a network’s core resilience).

In this section, we propose two node properties based on a net-
work’s structure:Core Strength andCore Influence. The core strength
of a node is a measure of how likely its core number will decrease
when edges are deleted from the network. The core influence of
a node is a measure of the extent to which nodes with lower core

numbers depend on that node for their own core numbers. In Sec-
tions 4.3 and 4.2, we describe the core influence and core strength
properties in more details.

We also define an overall network property, based on the core
strength and core influence of the nodes in the network.We describe
this in more detail in Section 4.4. We perform experiments on real
world networks of various types to show the relationship between
these measures and the core resilience of the network.

4.1 Notation
Before describing the Core Influence and Core Strength properties,
we first introduce our notations. Let K (u,G ) and Γ(u,G ) represent
the core number and set of neighbors ofu inG , respectively.We split
the neighbors of u into three sets ∆< (u,G ), ∆= (u,G ) and ∆> (u,G )
representing, respectively the neighbors of u with core number less
than, equal to, and greater than that of u.

∆< (u,G ) = {v : v ∈ Γ(u,G ) ∧ K (v,G ) < K (u,G )}

∆= (u,G ) = {v : v ∈ Γ(u,G ) ∧ K (v,G ) = K (u,G )}

∆> (u,G ) = {v : v ∈ Γ(u,G ) ∧ K (v,G ) > K (u,G )}

∆≥ (u,G ) = ∆= (u,G ) ∪ ∆> (u,G )

We also define a set Vδ of nodes where each node u ∈ Vδ has at
least one neighbor node,v , with a larger core number, i.e.,K (u,G ) <
K (v,G ). That also means the following:

Vδ = {u : u ∈ V ∧ |∆= (u,G ) | < K (u,G )}.

4.2 Core Strength
The Core Strength of node u is the minimum number of u’s neighbors
that need to be disconnected in order for u’s core number to decrease.
We denote the core strength of u in G by CS (u,G ).

For all nodes u in network G, u gets its core number due to
connections to ∆≥ (u,G ). Thus, the Core Strength of node u ∈ G is
given by,

CS (u,G ) = |∆≥ (u,G ) | − K (u,G ) + 1. (3)

Intuitively, the Core Strength of a node u describes how likely it
is to retain its core number when it loses connections. A node with
a high core strength has many redundant connections (i.e., many
connections to other nodes with equal or higher core number),
and so is less likely to drop its core number if its connections are
deleted.

Running Time: Given a network G = ⟨V ,E⟩, computing the
Core Strength of all the nodes is possible once the k-core decom-
position is performed, which takes O ( |E |) time. For each node we
need to count the number of neighbors with greater or equal core
number, which is also linear in the number of edges, O ( |E |) . So,
the time complexity of computing the core strength of all nodes is
O ( |E |).

4.3 Core Influence
The Core Influence of a node u in networkG is a measure of the extent
to which u affects the core numbers of neighbor nodes with lower core
numbers.

For a nodeu, the set of nodes that depend onu for their core num-
bers is Vδ ∩ ∆< (u,G ). Consider two nodes v0,v1 ∈ Vδ ∩ ∆< (u,G ),
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(a) Core Resilience against Edge Deletion
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(b) Core Resilience against Node Deletion

Figure 3: CoreResilience (R ·(0,50)100 (G )) against Core Influence-Strength (CIS95 (G )) for various networks. Figure 3a shows the core
resilience against edge deletion vs Core Influence-Strength, and Figure 3b shows the core resilience against node deletion vs
Core Influence-Strength. We can observe that the Core Resilience is higher for networks with higher Core Influence-Strength,
which is consistent with what we expect.

where v0 and v1 need at leastm′0 andm
′
1 nodes with higher core

numbers for their core numbers respectively, and m′0
K (v0,G ) <

m′1
K (v1,G ) .

Thenv1 depends more strongly on ∆> (v1,G ), thanv0 on ∆> (v0,G ).
To account for this, v1 needs to contribute a greater fraction of its
core influence to ∆> (v1,G ).

Thus, for v ∈ V , we introduce a weight δ (v,G ) such that v
contributes δ (v,G ) ·CI (v,G ) to ∆> (v1,G ).

δ (v,G ) = 1 − |∆= (v,G ) |

K (v,G )

Consider the nodes v0 and v1 again, and assume that they have
m0 and m1 neighbors with higher core numbers, and m0 < m1.
Then, the dependence of v0 on u is stronger than that of v1 on u.
So, to account for this, we equally divide the CI contribution of a
node v equally between all nodes in ∆> (v,G ).

Now, we mathematically define the core influence of u as

CI (u,G ) =
∑

v ∈Vδ∩∆< (u,G )

δ (v,G ) ·CI (v,G )

|∆> (v,G ) |
. (4)

To compute the core influence of all the nodes inG , we initialize
all values to 1. (Any positive number can be used.) We then start
computing the core influence of the nodes with minimum core
number, and proceed till we reach the nodes with maximum core
number. Because the core influence of a node is only influenced by
that of nodes with lower core numbers, we need only one iteration
to compute the core influence of all nodes.1

Running Time: To compute the core influence of all nodes in
G = ⟨V ,E⟩, we need to perform k-core decomposition first (O ( |E |)).
Then we need to find ∆= (u,G ), ∆> (u,G ) and ∆< (u,G ) for all nodes
u. This can be performed inO ( |E |). Thenwe find the setVδ inO ( |V |).
We can assign the core influences of all the nodes (with Equation
4) in O ( |V |). So, the overall computation takes O ( |E |).

1Core influence can also be defined to consider the nodes with equal core numbers, in
addition to lower. However, we found that the overall results were similar for both
definitions and one iteration is enough for the formulation with lower core numbers.

4.4 Core Influence-Strength
Core Strength and Core Influence describe node level properties.
To characterize the network, we need an aggregate measure.

Assume that CIf (G ) is the f percentile of core influence of all
nodes in G. Let Sf (G ) be the set of nodes in G with core influence
equal to or greater than CIf (G ).

Sf (G ) = {u : u ∈ V ∧CI (u,G ) ≥ CIf (G )}]
Then we define the Core Influence-Strength as the mean core

strength of Sf (G ). We denote it by CISf (G ),

CISf (G ) =

∑
u ∈Sf (G ) CS (u,G )

|Sf (G ) |
. (5)

If a network has high CISf (G ) for high f , this means that the
most influential nodes are unlikely to drop their core number when
they lose connections to their neighbors. We expect such networks
to have high core resilience. In contrast, the networks for which
CISf (G ) is low are expected to have low core resilience.

4.5 Experiments
To verify that CIS reflects actual core resilience, we perform ex-
periments on 22 real-world networks of different types (Table 1).
These networks were downloaded from SNAP2 and Network Repos-
itory3. The Core Resilience (R ·(0,50)100 (G )) vs Core Influence-Strength
(CIS95 (G )) for edge deletion is shown in Figure 3a, and that for
node deletion is shown in Figure 3b.

In these figures, each point is the core resilience of a network
(with the network type color-coded), and is the result of 10 exper-
iments. We observe that, as expected, the resilience is higher for
networks with high Core Influence-Strength. However the relation
between Core Influence-Strength and Core Resilience is sub-linear
- that is it increases rapidly for low values, but for networks high
Core Influence-Strength the difference in Core Resilience is not
2https://snap.stanford.edu/
3http://networkrepository.com/



Type Network |V | |E | kmax

AS

AS_733_19971108† 3015 5196 9
AS_733_19990309† 4759 8896 12
Oregon1_010331† 10670 22002 17
Oregon1_010428† 10886 22493 17

BIO BIO_Dmela‡ 7393 25569 11
BIO_Yeast_Protein‡ 1846 2203 5

CA
CA_GrQc† 5241 14484 43
CA_HepTh† 9875 25973 31
CA_Erdos992‡ 5094 7515 7

INF
INF_OpenFlights‡ 2939 15677 28
INF_Power‡ 4941 6594 5

P2P P2P_Gnutella08† 6301 20777 10
P2P_Gnutella09† 8114 26013 10
P2P_Gnutella25† 22687 54705 5

SOC
SOC_Hamsterster‡ 2426 16630 4
SOC_Advogato‡ 5167 39432 5
SOC_Wiki_Vote‡ 889 2914 9

TECH
TECH_Pgp‡ 10680 24316 31
TECH_Routers_rf‡ 2113 6632 15
TECH_WHOIS‡ 7476 56943 88

WEB WEB_Spam‡ 4767 37375 35
WEB_Webbase‡ 16062 25593 32

Table 1: In this table, |V | is the number of nodes, |E | is the
number of edges, and kmax is the degeneracy. These datasets
were downloaded from SNAP (denoted by †), and Network
Repository (denoted by ‡).

significant. Additionally we observe that the Core Resilience of P2P
networks generally have lower Core Resiliences, while that of SOC
networks tend to be higher in terms of both edge and node deletion.

5 IMPROVING CORE RESILIENCE
In many types of networks (such as technological networks), edges
or nodes might drop randomly. Wemay thus be interested in adding
a fixed number of edges to improve the core resilience of the net-
work, in order to ensure that the network will retain its basic core
structure even if nodes or edges are lost.

A simple way to accomplish this would be to add edges so as
to increase gaps between k-shells (i.e., by adding intra-shell edges,
beginning with the highest shells). However, this would change the
distribution of core numbers, which is an important property of the
network [4, 10]. We thus add an additional constraint that the core
numbers of the nodes should not change. Formally, we consider
the following problem:

Given an undirected, unweighted network G and an edge budget
b, which b edges should we add to G so that the core resilience of the
modified network G ′ is as high as possible and core numbers are not
changed?

5.1 Edge Deletion and Node Deletion
We define the core resilience under two scenarios in which the
ranking of the nodes by core number might change: edge deletion
and node deletion. Note that node deletion can be treated as a
special type of edge deletion, as when a node is deleted, all of its

edges are deleted. In this section, we show the relationship between
core resilience due to edge deletion and that due to node deletion.

Consider, a graph G = ⟨V ,E⟩. The (r ,p)-core resilience of G is
given by Rn (p )r (G ) and Re (p )r (G ) (by definition) for node deletion
and edge deletion, respectively.

Assume that deletion of p nodes results in deletion of p′ edges.
It is reasonable to assume p′ > p, since real-world networks rarely
have an average degree of one. That is, Re (p

′)
r (G ) ≈ R

n (p )
r (G ), and

in general Re (p )r (G ) ≥ R
e (p′)
r (G ). So, Rn (p )r (G ) ≤ R

e (p )
r (G ).

Now let us consider the (r ,pl ,pu )-core resilience under edge
deletion and node deletion.

R
n (pl ,pu )
r (G ) − R

e (pl ,pu )
r (G ) =

∫ pu
pl

(
R
n (x )
r (G ) − R

e (x )
r (G )

)
dx

pu − pl

R
n (pl ,pu )
r (G ) ≤ R

e (pl ,pu )
r (G ) (6)

5.2 Proposed Method: MRKC
In this section we address the problem of improving the core re-
silience of a network by adding a fixed number of edges. Our initial
results in Section 4 suggest that edges should be added to bolster
the nodes with high Core Influence; i.e., give them higher Core
Strength. We propose a new algorithm called Maximize Resilience
of k-core (MRKC).

Node deletion can be considered a special case of edge deletion,
as deleting a node is equivalent to deleting the edges of that node.
For this reason, the algorithm for improving the core resilience of
a network against edge deletion is the same as for node deletion.

The MRKC algorithm consists of two steps: Generating Candidate
Edges and Assigning Edge Priority. We discuss these steps in detail
in Sections 5.2.1 and 5.2.2, respectively.

5.2.1 Generating Candidate Edges. Given a network G = ⟨V ,E⟩,
the first step in MRKC is to determine which edges can be added to
the network without changing the core number of any node. Let
E ′ be the set of edges that do not exist inG . The size of E ′ is on the
order of |V |2. This is clearly too many edges to check, so we need a
method to quickly filter out the edges that would change the core
number if added to G.

MRKC accomplishes this by adapting the purecore-based method
described in [20], which examines the endpoint of each potential
edge (the purecore of a node u is the set of nodes that have the same
core number as u and could be affected by a change in the core
number of u).

Let us denote the purecore of node д in graphG by PC (u,G ). We
split E ′ into two sets Esim and Edif , such that, K (u,G ) = K (v,G )
for all (u,v ) ∈ Esim ; and K (u,G ) , K (v,G ) for all (u,v ) ∈ Edif .

From the set Esim , we generate subsets Eisim such that:
•
⋃

Eisim ≡ Esim ; i.e. is all edges in Esim are in some Eisim .
• Eisim ∩ E

j,i
dif ≡ ∅; i.e. all E

i
sim are disjoint.

• No two edges in Eisim are connected via the nodes that have
same core number with the endpoints of those edges.

Because all the edges have endpoints that are not in the other’s
purecore, we can insert E ′ to G , and if there is a node that changes
core number, we can pinpoint which edge in E ′ caused it. Assume
that there are nsim such subsets.



0.60

0.65

0.70

0 1 2 3 4 5

Edges added (%)

C
or
e
R
es
il
in
ce

(a) AS_733_1999 (Edge Deletion)

0.35

0.40

0.45

0.50

0 1 2 3 4 5

Edges added (%)

C
or
e
R
es
il
in
ce

(b) AS_733_1999 (Node Deletion)

0.870

0.875

0.880

0.885

0.890

0.895

0 1 2 3 4 5

Edges added (%)

C
or
e
R
es
il
in
ce

(c) INF_OpenFlights (Edge Deletion)

0.50

0.52

0.54

0.56

0.58

0 1 2 3 4 5

Edges added (%)

C
or
e
R
es
il
in
ce

(d) INF_OpenFlights (Node Deletion)

0.83

0.84

0.85

0.86

0 1 2 3 4 5

Edges added (%)

C
or
e
R
es
il
in
ce

(e) TECH_Router (Edge Deletion)

0.50

0.55

0 1 2 3 4 5

Edges added (%)

C
or
e
R
es
il
in
ce

(f) TECH_Router (Node Deletion)

0.880

0.885

0.890

0.895

0.900

0 1 2 3 4 5

Edges added (%)

C
o
re

R
es
il
in
ce

(g) WEB_Spam (Edge Deletion)

0.52

0.54

0.56

0 1 2 3 4 5

Edges added (%)

C
o
re

R
es
il
in
ce

(h) WEB_Spam (Node Deletion)

Figure 4: Change in Core Resilience against percentage of new edges added for different real-world networks. They-axis is the
core resilience and the x-axis is the percentage of new nodes added by the different algorithms. The figures in the left column
(Figures 4a,4c,4e,4g) are for edge deletion, and those in the right column (Figure 4b,4d,4f,4h) are for node deletion. In all cases,
MRKC outperforms the baselines.



Similarly, we split Edif into subsets Eidif in the same way as
Esim , but with additional conditions that if there are two edges in
Eidif that have the same endpoints, the other two nodes cannot
have the same core numbers.

Again in this case if on adding Eidif to G, the core number of
any node changes, we can identify which edge in Eidif caused that.
Let us assume that there are ndif such subsets.

Then, instead of checking all |E ′ | edges one-by-one, we need to
check only nsim + ndif times.

We can further speed up the generation of the candidate edges.
Assume that Ei· is the set of nodes currently being tested. Let kmin
and kmax be the minimum and maximum core number of the
nodes involved in Ei· . Then, adding the Ei· can only change the core
numbers of nodes u where kmin ≥ K (u,G ) ≥ kmax .

So, instead of running k-core decomposition on the entire net-
work after adding the edges, we can add the edges to the kmin -core
subgraph of the original network, and run the k-core decomposi-
tion on the subgraph. Again because, no node with core number
above kmax will be affected, we do not need to run the k-core de-
composition to completion - we can stop after the kmax -core has
been found.

5.2.2 Assigning Edge Priority. Once it obtains the set of edges
that can be added to the network, MRKC selects which subset of edges
to add. To do this, MRKC assigns each edge (u,v ) ∈ E ′ a priority
based its endpoints u and v . As discussed before, the goal is to
improve the core strength of the nodes with high core influence.
So the priority value for each node u is assigned as CI (u )

CS (u ) .
There are three cases that needs to be considered based on the

core numbers of u and v: (a) K (u,G ) > K (v,G ), (b) K (u,G ) <
K (v,G ), and (c) K (u,G ) = K (v,G ).

In the case of K (u,G ) > K (v,G ), addition of the edge (u,v ) will
only affectCI (v,G );CI (u,G ) will be unaffected. On the other hand,
if K (u,G ) = K (v,G ), bothCI (u,G ) andCI (v,G ) will be affected by
addition of (u,v ). So, for all (u,v ) ∈ E ′, MRKC assigns priority as,

ρ (u,v ) =




CI (u,G )
CS (u,G ) if K (u,G ) < K (v,G )
CI (v,G )
CS (v,G ) if K (u,G ) > K (v,G )
CI (u,G )
CS (u,G ) +

CI (v,G )
CS (v,G ) if K (u,G ) = K (v,G )

. (7)

At each step, MRKC selects the edge with the highest priority and
adds it to the network until we reach the budget, i.e., maximum
number of edges allowed to be added. The set E ′ needs to be updated
after any edge (u,v ) is inserted, but we can make it efficient by
checking only for those edges that has an endpoint in PC (u,G ) ∪
PC (v,G ). Updates to core influence and core strength can also be
done in similar way.

5.3 Experiments
To evaluate MRKC, we added up to 5% new edges to real-world
networks to improve their core resilience.

The networks we used for our experiments are given in Table 2.
Asmentioned in Section 5.2, adding edges to improve core resilience
is applicable to only some type of networks. For example, in social
networks, we cannot force people to form connections. However,
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Figure 5: Running time of our method for improving core
resilience (MRKC) on different networks. The x-axis is the
amount of new edges added (in %), and the y-axis is the time
taken to add the edges (in seconds).
we included these kind of networks in our experiments for the sake
of completeness.

For comparison, we consider three baseline methods where the
edges in E ′ are added (1) randomly (RANDOM), (2) in decreasing
order of the sum of the degrees of the endpoints (DEGREE), and (3)
in decreasing order of the sum of the core numbers of the endpoints
(CORE). We run each experiment 10 times, and present the mean
values. In Figure 4, we show the comparison of the core resiliences
of different networks with edges added by MRKC and the three
baselines. The y-axis is the core resilience, and the x-axis is the
percentage of edges added. Because of space limitations, we cannot
present the plots for all the networks, and so we give them in Table
2 when 5% new edges are added.

We observe that MRKC outperforms all considered baseline meth-
ods. In cases where the initial core resilience is low, MRKC can im-
prove it by a large amount (for example in INF_Power, BIO_Yeast).
However, if a network already has high core resilience to begin
with, MRKC cannot improve it by much (as in INF_OpenFlights,
TECH_Whois).

In the case of AS networks, the core resilience (with respect to
both edge deletion and node deletion) is low, and after adding the
edges by MRKC, the core resilience is increased significantly - up to
17.9% and 25.7% for edge deletion and node deletion respectively.
However, for the TECH networks, the core resilience against edge
deletion is already high. So on adding edges by MRKC, we could
achieve an improvement of only 3.4%.

In the plots shown in Figure 4, we observe that the rate of im-
provement of MRKC in the case of node deletion is lower than that
for edge deletion in the same network. This is because the core
resilience due to edge deletion cannot be less than that of node
deletion (Equation 6).

Running Time: In Figure 5, we show the time taken to add the
new edges according to our method for four networks. The x-axis
is the amount of new edges added (in%), and the y-axis is the time
taken to add the edges. The values are the means over 10 runs.

MRKC checks for all edges that can be added without changing
core number in the first step. This is whywe observe in Figure 5 that
the plots do not start at the same points. After the initial candidate
edges generation, we no longer need to check all the edges - if an



Edge Deletion (Re (0,50)50 ) Node Deletion (Rn (0,25)50 )
Type Network Original MRKC RANDOM DEGREE CORE Original MRKC RANDOM DEGREE CORE

AS

AS_733_19971108 0.58 0.65 0.60 0.61 0.58 0.35 0.44 0.40 0.38 0.36
AS_733_19990309 0.62 0.72 0.65 0.67 0.62 0.36 0.48 0.41 0.43 0.37
Oregon1_010331 0.66 0.78 0.71 0.72 0.72 0.42 0.49 0.45 0.44 0.45
Oregon1_110428 0.67 0.79 0.72 0.72 0.71 0.41 0.50 0.46 0.42 0.44

BIO BIO_Dmela 0.80 0.84 0.82 0.83 0.83 0.48 0.55 0.49 0.49 0.48
BIO_Yeast_Protein 0.49 0.71 0.55 0.57 0.56 0.34 0.47 0.38 0.37 0.37

CA
CA_GrQc 0.75 0.81 0.74 0.76 0.74 0.43 0.51 0.43 0.42 0.42
CA_HepTh 0.69 0.78 0.71 0.70 0.72 0.40 0.45 0.38 0.40 0.41
CA_Erdos992 0.69 0.72 0.70 0.69 0.71 0.44 0.49 0.42 0.43 0.43

INF INF_OpenFlights 0.87 0.89 0.88 0.87 0.87 0.51 0.57 0.51 0.52 0.51
INF_Power 0.49 0.77 0.36 0.42 0.38 0.29 0.46 0.26 0.25 0.27

P2P
P2P_Gnutella08 0.73 0.79 0.72 0.75 0.73 0.40 0.51 0.43 0.45 0.43
P2P_Gnutella09 0.71 0.78 0.73 0.72 0.73 0.39 0.50 0.42 0.45 0.43
P2P_Gnutella25 0.69 0.81 0.71 0.73 0.74 0.39 0.47 0.41 0.40 0.41

SOC
SOC_Hamster 0.84 0.86 0.85 0.85 0.85 0.50 0.54 0.52 0.52 0.50
SOC_Wiki_Vote 0.76 0.82 0.75 0.77 0.77 0.43 0.51 0.45 0.45 0.47
SOC_Advogato 0.88 0.91 0.89 0.88 0.89 0.52 0.61 0.52 0.50 0.51

TECH
TECH_Ppg 0.81 0.86 0.81 0.81 0.82 0.47 0.53 0.49 0.50 0.51
TECH_Router_rf 0.83 0.86 0.83 0.83 0.83 0.49 0.55 0.51 0.48 0.48
TECH_Whois 0.89 0.91 0.89 0.89 0.89 0.52 0.65 0.57 0.59 0.59

WEB WEB_Spam 0.87 0.90 0.88 0.87 0.87 0.51 0.56 0.51 0.52 0.52
WEB_Webbase 0.61 0.75 0.60 0.59 0.60 0.38 0.45 0.42 0.43 0.44

Table 2: Improvement (in %) in Core Resilience of the top 50% nodes (by core number) on adding 5% new nodes by MRKC, random
(RANDOM), highest mean degree (DEGREE) and highest mean core number (CORE) of the endpoints. It can be observed that MRKC
outperforms all the baselines.

edge (u,v ) is added, we only need to check the purecore of u and
v ., so the following edge insertions are faster. The only exception is
the AS_1999 network, where the runtime increases constantly. This
is because there are a large number of nodes with large purecores,
so subsequent checks still take a significant amount of time for this
network.

6 CONCLUSIONS
In this paper, we discussed the problem of capturing how the k-
core structure of a network changes due to deleted edges or nodes.
To address this we proposed a measure called Core Resilience of a
network (Section 3), which measures how much the ordering of
the nodes by core number is affected when there are missing edges
and nodes.

Computing the core resilience of a large networks is potentially
expensive, and so we proposed two node measures based on net-
work structure. The twomeasures - Core Strength and Core Influence,
can be used together to tell us if a network is likely to have high core
resilience or not. We proposed a method called Maximize Resilience
of k-core (MRKC) to add edges to a network without changing the
core number of any node, such that the core resilience of the result-
ing network is improved. We tested our method against baselines
on multiple real-world networks, and found that it can improve

the core resilience against edge deletion by 19% on average, and
against node deletion by 19.7% over the original network.

There are several future research directions that we plan to pur-
sue.We observed that in some networks theR ·(p )r is non-monotonic
with respect to p. Why do some networks have this behavior, and
which structural properties of the network can be used to predict
this behavior? Another direction is to consider specific attack sce-
nario - if there is an attacker which disables the nodes/edges in a
targeted manner, how can we extend our work to such cases?
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