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Abstract

Networked representations of real-world phenomena are often partially observed,
which lead to incomplete networks. Analysis of such incomplete networks can
lead to skewed results. We examine the following problem: given an incomplete
network, which b nodes should be probed to bring the largest number of new nodes
into the observed network? Many graph-mining tasks require having observed a
considerable amount of the network. Examples include community discovery, be-
lief propagation, information propagation, etc. For instance, consider someone
who has observed a portion (say 1%) of the Twitter retweet network via random
tweet sampling. She wants to estimate the size of the largest connected compo-
nent of the fully observed retweet network. To improve her estimate, she uses
her limited budget to reduce the incompleteness of the network. In this work,
we propose a novel algorithm, called MAXOUTPROBE, which uses a budget b
(on nodes probed) to increase the size of the observed network in terms of the
number of nodes. We compare MAXOUTPROBE to the best existing probing
approaches across various incomplete networks observed via different sampling
methods. Across a range of conditions, MAXOUTPROBE demonstrates consis-
tently high performance in comparison to existing methods.

1 Introduction

Suppose that one has observed an incomplete portion G of some larger complete network GEI To
learn more about the structure of (7, one can probe nodes from G, where each such probe reveals all
the neighbors of the selected node from G. The question we address here is: which nodes from G
should be probed to observe as many nodes as possible from G'? This question is related to previous
works on graph sampling and crawling. However, unlike much of the work in graph sampling, we
are not attempting to generate a sample from scratch. Instead, we are studying how one can enhance
or improve an existing incomplete network observation, without control over how it was generated
or observed. Our work is motivated by problems where one only has a partial observation of the
complete network; but needs the most accurate and informative picture of the complete network. For
example, suppose a network administrator who has partially observed a computer network through
traceroutes. Which parts of the observed network should she more closely examine to get the best
(i.e., most complete) view of the entire network? With a limited query budget, how should this
further exploration be done? Alternatively, suppose that one has obtained a sample of the Twitter

'Throughout this paper, when we use the term complete, we are referring to the completeness of the data
(i.e., no information is missing), rather than to a clique structure.



network from another researcher. The sample was collected for some other purpose, and so may not
contain the most useful structural information for one’s purposes. How should one best supplement
this sampled data?

We present a novel algorithm, called MAXOUTPROBE, whose goal is to select b nodes from G for
probing, such that the greatest number of new nodes are brought into G. MAXOUTPROBE achieves
this goal by ranking each node u based on its estimate of have many neighbors u has outside of
G. It then selects the top b nodes in this ranking. In particular, MAXOUTPROBE consists of two
steps: (1) Estimation and (2) Selection. First, during the Estimation Step, for each node u in G,
MAXOUTPROBE estimates u’s true degree in (5; it also estimates G’s average clustering coefficient.
Second, during the Selection Step, MAXOUTPROBE uses these two quantities to estimate the number
of nodes outside G to which w is adjacent. The b nodes that are predicted to have the most neighbors
outside the incomplete network are selected for probing.

We evaluate MAXOUTPROBE on six network datasets, using incomplete networks observed by four
popular sampling method, and show that MAXOUTPROBE selects nodes for probing that are more
valuable than those selected by comparison methods.

The contributions of our paper are as follows: (1) We present MAXOUTPROBE, a two-step algo-
rithm that first estimates graph statistics, and then selects probes in accordance with those statistics.
Unlike existing literature on estimating network characteristics, we do not assume knowledge of
how the incomplete network was observed, and present a method for estimating the relevant statis-
tics without such background knowledge. (2) We show that with respect to the task of bringing
as many nodes as possible into the incomplete network, the graphs obtained by probing nodes ac-
cording to MAXOUTPROBE are substantially better than those obtained by probing according to the
other competing strategies.

2 Problem Definition

We are given an incomplete, partially observed graph G that is a part of a larger, fully observed
graph G. We wish to gain broader observability of G; that is, we wish to observe as many nodes as
possible from G. To aid in this task, we are allowed to probe a specified number b additional nodes

in G and gain more information about the probed nodes. Thus, the problem at hand is to select the
b nodes which maximize the number of nodes observed from G using only the structure provided in

G. Let represent the augmented graph—i.e., G with the information obtained from the probes.

In this work, probing a node u is defined as learning all of u’s neighbors (e.g., querying Facebook
for a list of all friends of a user or learning all e-mail contacts of an individual). Moreover, there is
no ‘master list’ of nodes in G that allows an algorithm to probe nodes it has not yet seen. Thus, only

nodes that already exist in G can be probed.

Figure Elillustrates the probing process. Red nodes in G have already been fully explored. Yellow
nodes are present in G, but have not yet been fully explored: these are the candidates for probing.

Green nodes are not yet present in G, and we have no knowledge of them. By probing yellow nodes,
we learn about the existence of the green node. We refer to the red nodes as ‘fully explored’, and
the yellow nodes as ‘unexplored.’

3 Proposed Method: MaxQOutProbe

Given a budget of b nodes to probe, MAXOUTPROBE selects which b unprobed nodes in G (.,
yellow nodes in Figure |1)) are adjacent to many nodes outside G (i.e., green nodes in Figure .
MAXOUTPROBE does not make assumptions about how G was observed.

MAXOUTPROBE has two steps: Estimation and Selection. During the Estimation Step, a small
amount of budget is used to probe nodes from G. The resulting information is used to estimate
necessary statistics of G. During the Selection Step, the statistics estimated during the Estimation
Step are used to score each node in G with respect to how many neighbors outside of G that node
may have. The highest scoring b nodes are then selected for probing.
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Figure 1: Overview of probing. Red nodes are already fully explored. The problem is to select
yellow nodes (unprobed but in () that are adjacent to many green nodes (unprobed and not in G).

Let a candidate node be a node in G that was not fully observed during the process of observing
G (i.e., such a node is a candidate for probing). For each candidate node v in G, MAXOUTPROBE
estimates dﬁ“t, the number of u’s neighbors that lie outside of G, as follows:

out __ in known unknown
du, - du - du - du - du - du (1)

where:

e d, is u’s true degree in G. This quantity is unknown and must be estimated.
e d'" is the number of nodes in G that u is adjacent to in G. This includes:

— dkmown | the number of nodes in G that we already know to be adjacent to u. This
quantity can be directly calculated.

- dﬁ"km’“’", the number of nodes in G that u is connected to in G, but not in G (i.e., the
connections to u that have not been observed). This quantity must be estimated.

Once dZ“t has been calculated, MAXOUTPROBE selects the b nodes with the highest such values
(where b is the probing budget).

We next describe how MAXOUTPROBE estimates each node u’s true degree d,, as well as the graph’s
average clustering coefficient C, which is used to estimate d“"¥"°“" for each node. Section
describes how MAXOUTPROBE puts these various pieces together to obtain estimates for d2**.

3.1 MAXOUTPROBE’s Estimation Step

MAXOUTPROBE estimates each candidate node u’s true degree d,, and the graph’s clustering co-
efficient C'. Note that although there is a large body of work on estimating graph statistics, those
works typically assume knowledge about how the graph was observed/generated (see Section[5). In
contrast, MAXOUTPROBE makes no such assumption. Instead to estimate the necessary statistics
of G, MAXOUTPROBE performs a series of initial probes.

Estimating Node Degrees. We empirically observe that for incomplete networks, there exists some
scale factor f such that multiplying u’s sample degree by % gives a good approximation of d,,. Thus,

if MAXOUTPROBE estimates f, it can estimate the true degree d,, of every node in the incomplete
network by using that node’s observed degree. To perform this estimate, given a total probing budget

of b, MAXOUTPROBE begins by identifying the b candidate nodes from G with the highest degrees

in G. A small number of these nodes are randomly selected for probing and their true degrees in
G are learned. By taking the average of the ratios of each selected node’s true degree to its degree

in G‘, MAXOUTPROBE estimates f.
Estimating Average Clustering Coefficient. Recall that the clustering coefficient of a node is the

fraction of its neighbors that are connected, divided by the maximum possible such value. For a can-
didate node u, MAXOUTPROBE needs to know how many nodes that are presently two steps away

*In our experiments, we select 100 such nodes, but this value can vary depending on the desired accuracy
and total probing budget available.



from u in G are likely to be connected to w in G. Thus, rather than estimating the global average
clustering coefficient or the average clustering coefficient for a candidate node, MAXOUTPROBE
must estimate the average clustering coefficient for nodes that are adjacent to the candidate nodes.
It is the clustering coefficient of these neighboring nodes that governs the number d“"*"°"  To
make this estimation, MAXOUTPROBE uses the nodes selected for probing during the estimation of
f, as described above. For each of these selected nodes u, MAXOUTPROBE considers each node v
that was two steps away in G. MAXOUTPROBE then observes whether, after probing wu, whether u
connected to v. By averaging these results over all selected nodes u, MAXOUTPROBE estimates the
average clustering coefficient.

Remarks. MAXOUTPROBE’s estimates for the degree of a candidate node and the clustering coef-
ficient of the graph are unbiased for two popular forms of observing graphs: random node sampling
and random edge sampling. Due to brevity, we have omitted these proofs.

3.2 MAXOUTPROBE’s Selection Step

MAXOUTPROBE uses the estimates described above to select the b candidate nodes that have the
most unobserved neighbors. As before, u is a (candidate) node from G that was not fully explored
during the observation process. Let fr and fy, respectively, denote the fraction of edges and nodes
from G that are present in G. To estimate dunknown MAXOUTPROBE uses the knowledge that real-
world social and information networks tend to exhibit high clustering (i.e., nodes tend to connect
to friends-of-friends). More precisely, let w be an unexplored node that is two hops away from a
candidate node w, such that w and u are not connected in G (but they may be connected in G). w
forms an open wedge with u, because w and w share at least one neighbor. Let 1, be the number
of such nodes w; these are the nodes in G to which v is most likely connected. In the Estimation
Step, MAXOUTPROBE estimated the average clustering coefficient C' of the network, which defines
the fraction of wedges that are triangles (that is, the ratio of 3 times the number of triangles in
the network to the number of length-2 paths in the network). Given this value, MAXOUTPROBE
estimates that u is connected to C' x W, nodes in G, in addition to its known neighbors in G‘

Putting this all together, MAXOUTPROBE obtains the estimate for the number of neighbors that »
has outside of G
dZUt =d, — dﬁnown o dgnknown =d, — dﬁnown o (C % Wu) )

dknewn and W, can be calculated exactly from G. The challenge thus lies in estimating d,, and
C, which was described in the Estimation Step above. MAXOUTPROBE computes d°“* for all

candidate nodes in G and selects the b candidate nodes with the highest d°“* values.

4 Experiments

Our experiments demonstrate that MAXOUTPROBE outperforms a variety of baseline algorithms
with respect to the task of maximizing the number of nodes brought into the observed network,
across incomplete networks observed/generated by different popular sampling methods.

Datasets. Table [I|describes the six real-world networks used in our experiments. Four are commu-
nications networks, and the other two are co-occurrence networks. The first co-occurrence network
is an Amazon co-purchasing network with the nodes denoting books; and the second is a Youtube
co-watching network with the nodes representing videos.

Sampling Methods. We generate incomplete networks using sampling methods, each correspond-
ing to real application scenarios. For each method, we sample 10% of the edges from the original
network. We consider the following sampling methods.

RandNode: We sample nodes at random. The sample contains those nodes plus all of their neigh-
bors. We assume that a list of the selected nodes is available. We select one node at a time until our
sample reaches 10% of the total number of edges in G or4g.

3 Although v’s individual clustering coefficient would be more valuable here than the global clustering
coefficient C', MAXOUTPROBE has incomplete information about «, and thus uses C' as an approximation for
the per-node clustering coefficients.



Type | Network G | #0fNodes #of Edges G’s Clust. Coeff. # of Conn. Comp.

Communications Enron Emails 84K 326K 0.08 950
Communications Yahoo! IM 100K 595K 0.08 360
Communications | Twitter Replies 261K 309K 0.002 Comm. 11,315
Communications | Twitter Retweets 40K 46K 0.03 Comm. 3,896
Co-occurrences Amazon Books 270K 741K 0.21 3840
Co-occurrences Youtube Videos 167K M 0.007 1

Table 1: Statistics for the networks considered in our experiments. Clust. Coeff. is short for cluster-
ing coefficient. Conn. Comp. is short for connected components.

Category  Sub-category Name Description
Exploit Degree HighDeg, LowDeg  Select the highest or lowest degree nodes.
Structural Hole HighDisp, LowDisp  Select the highest or lowest dispersion nodes.
CrossComm Pick nodes with the highest fraction of neighbors outside of
their community (as identified with the Louvain method [5]).
Clustering HighCC, LowCC Select the highest or lowest clustering coefficient nodes.
Explore Random Randomly select nodes from the sample.

Table 2: Baseline probing strategies. We categorize strategies as explore or exploit, and further
subdivide as degree-based, structural hole-based, or random. Dispersion is an edge-based measure
of how well a node’s neighbors are connected to each other [4]. For each node, we average the
dispersion of each of its adjacent edges.

RandEdge: Random edges are selected uniformly at random. Because edges, rather than nodes, are
sampled, no list of sampled nodes is available. The Twitter Gardenhose, for example, is a random
10% of the tweet stream (where each retweet represents an edge).

Random Walk (RW) and Random Walk w/ Jump (RW]): These sampling methods begin at a
random node and repeatedly transition to a random neighbor. In the RWJ method, at each step there
is a chance (we use 15%) of jumping to a random node. A single edge at a time is observed. Thus,
no list of sampled nodes is available. These are common sampling methods for large networks [|12].

Baseline and Competing Approaches. Table [2| describes a variety of baseline and competing
methods, each with a simple scoring function for selecting nodes.

These methods each rank all of the nodes in the incomplete graph G (except those that have already
been fully explored). Some of the methods use exploit strategies, which strategically select nodes,
while others utilize explore strategies, which randomly select nodes.

High degree probing relies on the intuition that high-degree nodes in G are connected to many nodes

outside of G. The structural hole methods target nodes that “fill” structural holes, thus connecting
different parts of the graph [6]]. On a similar intuition, the CROSSCOMM algorithm selects nodes on
the border of two communities.

Random probing selects random nodes from within G for probing.
Experimental Setup.

For each network listed in Table[I} we generate 20 incomplete networks using each of the four sam-
pling methods described above. Each incomplete network contains 10% of the edges from the origi-
nal network. For each probing approach, we conduct probes at budgets b € {1%, 2%, 3%, 4%, 5%}
of the number of nodes in G.

After conducting probes on an incomplete network G, we obtain an augmented sample graph el
To evaluate the quality of G’, we simply count how many nodes it has

Results. First, we evaluate MAXOUTPROBE and each of the baseline approaches on each of the
incomplete networks described above. We observe that averaged over the 20 incomplete networks,

*Since each G graph starts with the same number of nodes, counting the number of nodes in G’ tells us how
many new nodes were observed.
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Figure 2: (a) Results of MAXOUTPROBE and several baseline probing strategies on 20 incomplete
networks generated by random node sampling on the Yahoo! IM network. Shading indicates one
standard deviation. Observe that MAXOUTPROBE is the best across all considered budgets. (b)
Results of MAXOUTPROBE and several baseline probing strategies on 20 incomplete networks gen-
erated by random walk sampling on the Twitter Replies network. Shading indicates one standard
deviation. Observe that MAXOUTPROBE and High Degree probing perform similarly because the
Twitter Replies network has a very low clustering coefficient (of 0.002).

for every sampling method and every network, MAXOUTPROBE matches or outperforms the best
baseline strategies. For example, see Figure[d|(a), which shows the performance of several strategies
on an incomplete network generated by the RandNode sampling process on the Yahoo! IM network
(for the sake of space, we present only the best baseline approaches).

In some cases, MAXOUTPROBE performs roughly the same as High Degree probing (see, e.g.,
Figure [4(b), for results on incomplete samples generated by random walk sampling on the Twitter
Replies network). This occurs when the incomplete network has a very low estimated clustering
coefficient. On these incomplete networks, MAXOUTPROBE estimated average clustering coeffi-
cients ranges from 0.0 to 0.03. With such a low clustering coefficient, MAXOUTPROBE reduces to
effectively picking the nodes with the highest observed degrees.

Due to space constraints, we cannot present plots for each network and sampling method. We thus
aggregate results across datasets, comparing MAXOUTPROBE to High Degree probing (which is
typically the best baseline appraoch).

For each incomplete network and each considered budget, we conduct probes using MAXOUT-

PROBE and High Degree probing, and count the number of nodes in each resulting G'. Because
we cannot meaningfully compare these numbers across datasets or sampling methods, we also con-
duct the same number of probes using Random probing, and then calculate the percent by which
MAXOUTPROBE and High Degree probing improved over Random probing (i.e., how much larger

is the G/ produced by MAXOUTPROBE or High Degree probing versus that produced by Random
probing?). By comparing to Random probing, we are able to make sensible comparisons across
datasets.

Figure [ shows complementary CDFs of these aggregate results at the 0.05 probing budget on in-
complete networks generated, respectively, by Random Edge sampling, Random Node sampling,
Random Walk sampling, and Random Walk with Jump sampling. Similar results were observed
at other probing budgets. The x-axis represents the percent improvement over Random probing,
with values greater than 0 indicating that the approach performed better than Random probing. The
y-axis represents the fraction of such results that produced at least a certain fraction improvement
over random. We see that in all cases, MAXOUTPROBE has a higher area under the curve than High
Degree probing, indicating greater improvement. The area under the curve for MaxOutProbe ranges
from 4% to 36% higher than that of High Degree probing.



-
=]

—

=]

— MaxOutProbe (AUC = 0.43)
— High Degree (AUC = 0.40)

—— MaxOutProbe (AUC = 0.34)
— High Degree (AUC = 0.25)

(=]
co
(=]
co

ST 9
& 8
5046 50‘6
5 5
£o0a §oa
o ="
g g
=} o
o o

(=]

N
o
N

0‘840 0.2 0.4 0.6 0.8 1.0 1.2 0'8.0 01 02 03 04 05 06 07 0.8
Fraction Improvement over Random Probing Fraction Improvement over Random Probing
(a) Observed by Random Edge Sampling (b) Observed by Random Node Sampling
1.0 1.0
— MaxOutProbe (AUC = 0.39) — MaxOutProbe (AUC = 0.47)
—— High Degree (AUC = 0.35) —— High Degree (AUC = 0.45)
- 0.8 o 0.8
[a) A
o @)
E 0.6 E 0.6
£ 0.4 % 0.4
[}
g £
© o2 © 0.2
0‘80 0.2 0.4 0.6 0.8 1.0 0‘8.0 0.2 0.4 0.6 0.8 1.0 1.2
Fraction Improvement over Random Probing Fraction Improvement over Random Probing
(c) Observed by Random Walks (d) Observed by Random Walks with Jumps

Figure 3: Complementary CDFs showing results of MAXOUTPROBE and High Degree probing
as compared to Random probing across all datasets, on incomplete networks observed by various
sampling methods. In all cases, MAXOUTPROBE has a higher area under the curve, indicating a
greater improvement over Random probing than High Degree probing.

5 Related Work

Our work is most related to graph sampling and crawling. There is a rich literature on sampling
graphs. For instance, previous literature has examined the study of community detection from graph
samples—e.g., by using minimum spanning trees (MSTs) [20], or by expanding a graph sample [|14].
Avrachenkov et al. 3] use queries to locate high-degree nodes. O’Brien and Sullivan [[16] use
local information to estimate the core number of a node. Hanneke and Xing [9] and Kim and
Leskovec [11] infer characteristics of a larger graph given a sample.

Maiya and Berger-Wolf [[15] study the problem of online sampling for centrality measures. Cho et
al. [[7] study the problem of determining which URLs to examine in a Web crawl. In contrast, we
study the problem of selecting which nodes from an existing incomplete network one should probe,
rather than constructing a sample from scratch. Also, unlike many sampling methods, we are not
down-sampling a network to which we have complete access, but using a limited number of probes.
Additionally, we select probes in a batch, not incremental, manner. This difference is critical when
obtaining data is time-consuming.

The closest method to ours is the MEUD (Maximum Expected Uncovered Degree) algorithm by
Avrachenkov et al. [2]]: a sampling method intended to bring as many nodes as possible into the
sample. MEUD begins with one node; then in each step, it grows the sample by adding the node with
the highest expected degree in the underlying, unobserved network. MEUD requires knowing the
degree distribution of the underlying network, but for certain classes of graphs, reduces to selecting
the nodes with the highest observed degrees. This is a valid approximation only for limited classes of
random graphs, while our proposed method does not have such constraints. Note that if we modified
the MEUD algorithm to fit our problem setting, it would be most like the High Degree Probing.



Although we are the first to conduct a study on the problem of probing incomplete graphs, re-
searchers interested in specific network features have studied related problems. Macskassy and
Provost [|13]] address the problem of identifying malicious entities in incomplete network data by
gathering more information about suspicious entities.

Cohen et al. [8] propose a strategy for immunizing a population in an unobserved network by tar-
geting neighbors of randomly selected nodes. Shakkottai [18|] considers the problem of nodes in a
sensor network attempting to find the source of information. Ragoler et al. [[17] study the problem
of determining the frequency at which sensor nodes should query their environments.

Lastly, theoreticians have studied subgraphs through concepts such as monotone graph properties
(e.g., [1D.

6 Conclusions

We discussed the problem of determining which nodes in an incomplete network to probe in order
to maximum the number of new nodes observed. We presented the MAXOUTPROBE algorithm,
which is based on estimating the degree of each observed but unexplored node, as well as the
graph’s average clustering coefficient in order to rank nodes for probing. We demonstrated that
MAXOUTPROBE outperforms several baseline and competing approaches, on incomplete networks
observed/generated by four popular sampling methods over six network datasets. In cases where the
graph has a very low clustering coefficient, MAXOUTPROBE’s performance is similar to selecting
nodes with the highest observed degree.
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8 Appendix

8.1 Estimations for Known Samples

Given additional information about the process by which G was generated, MAXOUTPROBE may
sometimes be able to produces unbiased estimates for the node degrees and the average cluster-
ing coefficient without performing initial estimation probes. Although additional information is
required, one is able to bypass the initial use of budget that would otherwise be required to estimate
these parameters.

In this section, we discuss how MAXOUTPROBE can perform such estimations for the cases when

one knows that G was generated by either the RandNode or RandEdge sampling methods discussed
in Section[d] and one also knows the total number of nodes and edges in G.

8.1.1 Estimations for Random Node Sample

Estimating degree d,: The Random Node sampling method randomly selects fx fraction of nodes
from G for exploration, and learns all neighbors of the selected nodes. Thus, if node « has observed

degree d*™°"™ in G, MAXOUTPROBE estimates its true degree as fLN x dfmown B g | if u is adjacent
to 5 nodes in &, and 10% of the nodes from G were selected during sampling, then MAXOUTPROBE
estimates u’s true degree d,, as 50. This estimation works well for high degree nodes, but is less

accurate for low degree nodes. However, as observed in Section 4] note that low degree nodes are
unlikely to be useful probes, so this method is accurate where it needs to be.

Claim: The estimator for d,, is unbiased.

Proof: Let cfu represent the estimator for d,,. We must show that for each w, E(dL) = d,. Recall
that fx fraction of nodes from G were selected uniformly at random during sampling to produce G;
these nodes plus their neighbors constitute G.

Consider a node w that has not been explored during the sampling process, but is present in the

sample G (that is, u is adjacent to a node that was explored during sampling). Node u has d,,
neighbors in GG, and because fx of the nodes from G were sampled uniformly at random to produce

G, ?(dﬁ”ow”) :Adeu. Thus, fiNE(dfj”O“’”) =d,, s0 E(%Ndﬁ”ow") =d,. d, = J%Ndﬁ”"w”, SO
E(d,) = d,, so d,, is an unbiased estimator for d,,. O

Estimating clustering coefficient C: To find C', MAXOUTPROBE estimates the number of wedges
(2-paths) and triangles in G.

Suppose that a triangle (z,y, z) exists in G. What is the probability that it will be preserved in G2

In order for us to observe all edges (x, ), (y, z), and (z, z) in G, then at least one node from each of
the three member edges must be fully explored during sampling. Thus, the triangle will be preserved
if and only if at least two of the three nodes are selected. We can write the probability pr that this
occurs as:

pr=3f31—fn)+ f¥ 3)

In other words, pr is the probability that exactly two of the three nodes are selected, plus the proba-
bility that all three are selected. Thus, by multiplying the observed number of triangles in G by p%’
MAXOUTPROBE estimates the number of triangles 7" in G.

Now we calculate the probability that a length-2 path (x,y, z) from G is preserved in Gz may or
may not be connected to z). To observe this path in G, either  and z must both be probed, or y
must be probed. The probability py of this occurring is as follows:

pw = [ +3(fF(1— fn) + fn(1— fn)? (4)

This is the probability that all three nodes are probed plus the probability that two nodes are probed

plus the probability that just y is probed. MAXOUTPROBE then multiplies the observed number of
length-2 paths from G by pi to estimate the number of wedges W in G.

w
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G’s clustering coefficient C' is then estimated as %
Claim: The estimator for C' is unbiased.

Proof: Let C represent the estimator for C. We must show that E(C') = C. f fraction of nodes
from G were selected uniformly at random during sampling to produce G.

Suppose that wedge (z, y, z) from G is present in G. Suppose that (z,y, z) is a closed triangle in G
(soedge (x, z) is present in (7): what is the probability that edge (z, z) is present in G, 50 (z,y, 2) is

a closed triangle in G? Because we assume that (z,y, z) is present in G, some of those three nodes
must have been selected during the sampling process.

There are three possibilities: (1) all three of x,y, z were selected, (2) exactly two of z,y, 2 were
selected, or (3) only y was selected (if only « or only z was selected, then either edge (y, z) or edge

(z, z) would be absent from G.

Possibility (1) occurs with probability f3. Possibility (2) occurs with probability f& (1 — fn).
Possibility (3) occurs with probability fx (1 — fx)2. In possibilities (1) and (2) edge (z,z) will

certainly be present in G. In p0551b111ty (3), edge (z, z) will not be present in G. Thus, glven that

wedge (z,y, z) is present in G, the probability P,j,scq that edge (x, 2) is also present in G is as
follows:

Iy +eff(1—fn)
fR 3= fnv) + fn(1 = fn)?

Pclosed =

&)

Thus, of the wedges that are closed wedges in GG, we expect that P, s.q fraction of the wedges
present in G to be closed in G. In other words, E(Priosed)C = Csamp-

Note that the definition of C' above is simply ﬁC’samp, so E(C) = C, so E(C) is an unbiased
estimator of C. O

The results above show that the estimates are correct in expectation, but do not provide concentration
bounds. We can prove such results that bound the errors in expectations by applying Hoeffding’s
inequality [10]. While these bounds may be weak for each individual entry, they can provide the
theoretical basis for showing that we will be able to identify all large degrees vertices, and the
degree of vertex that we predict to have a large degree, will not be too small. We are not including
this analysis here due to space constraints, but the principles of Theorem 6.2 in [[19], will apply to
our application.

8.1.2 Estimations for Random Edge Sample

Estimating degree d,: In this sampling method, fg fraction of edges are sampled uniformly at
random. Thus, to estimate a node’s true degree d,,, MAXOUTPROBE simply multiplies its observed
degree d"m°wn by J%E As with the Random Node sampling method, this estimation is inaccurate for

low degree nodes, but these nodes are unlikely to be chosen as probes, and so inaccuracy here does
not affect the final probe selections.

Claim: The estimator for d,, is unbiased.

Proof: As before, let cfu represent the estimator for d,,, and we must show that for each u, E(d;) =
dy. G consists of fg of the edges from G selected uniformly at random.

Consider a node u in G, with true degree d,. Because fgr of the edges from G were sampled
uniformly at random, E(d*"°v") = fpd,,. Thus, E( dk”"“’”) = d,,. This first term is simply d,,,

SO cf is an unbiased estimator for d,,. O

Estimating clusterlng coefficient C: MAXOUTPROBE first calculates the clustering coefficient
Csamp of G. Consider a length-2 path (z,y, z) in G that is present in G. 1If that path is a closed
trlangle in G (i.e., x is connected to z), there is a fg probablhty that the path will be a closed trian-
gle in G (i.e., with f probability, edge (, z) is present in (). Thus, MAXOUTPROBE estimates
C - ?Csa7er
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Claim: The estimator for C' is unbiased.

Proof: As before, let represent the estimator for C', and we must show that E(C’ )=2C. G consists
of fg of the edges from G selected uniformly at random.

C, the clustering coefficient of G, is the fraction of wedges (length-2 paths of nodes (x,y, z)) that
are closed (x is connected to z). Suppose that edge (z, z) exists in G; then, independently of wedge
(z,y, z) being present in G, there is fE probability that it is present in G. Thus, of the Wedges from
G that are present in (3, we expect that fzC fraction of these wedges are closed in G (C'is the
probability that it was closed in G, and f is the probability that it remained closed in G). If Csamp
is the clustering coefficient of G, then E (Csamp) = fEC, 30 E (fiECsamp) = (. The first term is

E(C), so the C is an unbiased estimator for C. O

The bounds discussed above also apply here.
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