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Abstract—Real-world network datasets are often incomplete.
Subsequently, any analysis on such networks is likely to produce
skewed results. We examine the following problem: given an
incomplete network, which b nodes should be probed to bring
as many new nodes as possible into the observed network? For
instance, consider someone who has observed a portion (say 1%)
of the Twitter network. How should she use a limited budget
to reduce the incompleteness of the network? In this work, we
propose a novel algorithm, called MAXREACH, which uses a
budget b to increase the number of nodes in the observed network.
Our experiments, across a range of datasets and conditions,
demonstrate the efficacy of MAXREACH.

I. INTRODUCTION

Suppose that one has observed G̃, an incomplete portion of
some larger network G. To learn more about the structure of
G, one can probe nodes from G̃, revealing more information
about the selected nodes. Which nodes in G̃ should be probed
if the goal is to observe as many nodes as possible in G?
Unlike much of graph sampling work, we are not generating
a sample from scratch, but are improving existing samples.
Our work is motivated by problems where one has partially
observed the complete network; but needs an accurate global
picture. For example, suppose that one has obtained a sample
of the Twitter network from another researcher. How should
one best supplement/enrich this sampled data?

We present MAXREACH, a novel algorithm for selecting
which nodes from a partially observed network should be
probed in order to observe as many nodes as possible from
the underlying network. MAXREACH estimates each node’s
true degree in G as well as the number of nodes to which it
is connected in G̃, then selects nodes to probe.

Across a variety of networks and probing scenarios,
MAXREACH consistently outperforms comparison strategies.
Figure 1 depicts the results of MAXREACH and three alterna-
tive strategies on a uniformly random edge sample from the
Enron e-mail network. Over a large range of probing budgets,
MAXREACH dramatically outperforms the other strategies.

We make the following contributions:

• We present MAXREACH, a novel algorithm for selecting
nodes from an incomplete network to probe in order to
maximize the number of observed nodes.

• Our experiments demonstrate that MAXREACH outper-
forms the best baseline by a large margin (e.g., Figure 1).

Fig. 1. MAXREACH results on Enron e-mail network. G̃ was generated by a
10% random edge sample. Here, probing a node returns all of its edges in G.
MAXREACH outperforms the baselines by large margins. Shading indicates
one standard deviation. Similar results were observed on other networks.

II. PROBLEM DEFINITION

We are given an incomplete, partially observed graph G̃
that is a part of a larger, fully observed graph G. Our goal is
to observe as many nodes as possible in G. We are given a
probing budget, which we use to probe observed nodes and
gain more information about those nodes (discussed below).

A. Probing Scenarios

We consider a broad variety of probing scenarios. We
assume that the degree of a node is not known in advance.
Although many APIs can return the degree of a node, we
intend for our techniques to be used even when one does not
have access to such information. For example, one may be
obtaining data without use of an API, such as by mailing
surveys, observing web traffic through machines, etc. If the
degree of the node is known, then it can easily be incorporated
into our method.

Suppose that node u is selected for probing. We consider the
following probing scenarios, which determine the information
returned when the probe is conducted:

All-Neighbor Probing: All of node u’s edges are returned.
For example, the Facebook Graph API allows one to get a list
of all of a user’s friends (with appropriate permissions and
subject to privacy settings) with one request.
k-Neighbor Probing, No Replacement (k-NR): k edges

adjacent to u are returned (for a fixed k). These edges are
selected uniformly at random from all unobserved edges of
u. For example, the Twitter API allows for one to request a
user’s followers, and returns 5, 000 results at a time.
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Symbol Meaning
G Underlying network, not fully observed
G̃ Partially bserved network, initially and while probing
N Number of nodes in G

p Fraction of edges or nodes sampled to produce G̃
qi, q̂i Probability that a randomly selected node from G has

degree equal to i in G, MAXREACH’s estimate of qi
C(d) Mean clustering coefficient in G for nodes of degree d

du, d̂u Degree of node u in G, MAXREACH’s estimate of du
d̃u Observed degree of node in G̃

TABLE I
Notation used in describing MAXREACH.

k-Neighbor Probing, With Replacement (k-WR): The k-WR
probing scenario is like the k-NR scenario, but edge selection
is done with replacement; that is, the k returned edges may
contain duplicates or previously observed edges. For example,
the Twitter API returns 100 retweets at a time; however,
multiple retweets can correspond to the same network edge.

Connection Charge Probing, No Replacement (Conn-NR):
For each probe, one must pay a cost c to initiate a probe as
well as a cost r per edge requested, and the user must specify
k, the number of edges requested, for a total cost of c+ rk.

Connection Charge Probing, With Replacement (Conn-WR):
Conn-WR is identical to Conn-NR, except that the returned
edges are selected uniformly at random with replacement.

B. Generation of G̃ and Assumptions

We assume that the original creators of G̃ produced it
either by sampling p fraction of the edges from G uniformly
at random, or by sampling p fraction of the nodes from
G uniformly at random. In the latter case, when a node is
sampled, it and all of its neighbors are included.

We assume that we know the number of nodes and edges
in G, the sampling process that was used to generate G̃, and,
if G̃ was generated by a Random Node sample, the identities
of the nodes that were sampled during the sampling process.

III. PROPOSED METHOD: MAXREACH

We present MAXREACH, a novel algorithm for selecting
which nodes from a partially observed network G̃ to probe in
order to maximize the total number of nodes observed.

For each node u in G̃, MAXREACH estimates node u’s true
degree du and the number of neighbors doutu that it has outside
G̃ (Section IV-C). Using these values, MAXREACH assigns a
probing scenario dependent score to node u (Section V-A). For
example, under All-Neighbor Probing, MAXREACH assigns
each node u a score of doutu . Figure 2 presents an overview
of MAXREACH, and Table I contains our notation.

MAXREACH contains the following steps:
• The Setup Stage infers global network characteristics, as

well as each node u’s true degree du in G and the number
of neighbors that u has in G̃. Using these two values,
MAXREACH assigns each node a score. See Section IV.

• In the Probing Stage, MAXREACH selects nodes for
probing using their scores, obtains new information about
those nodes, and updates their scores. See Section V.

Fig. 2. Overview of MAXREACH. The Setup Stage estimates global network
properties. Next, probing is conducted in an iterative manner. Node statistics
are updated as new information is obtained.

IV. MAXREACH SETUP STAGE: INFERRING GRAPH
STATISTICS

MAXREACH uses the observed network G̃ to estimate the
degree distribution of the underlying network G, as well as the
relationship between degree and mean clustering coefficient.1

A. Estimating Degree Distribution

To estimate the degree distribution of the underlying net-
work G, MAXREACH uses (1) the observed node degrees in
G̃, (2) whether G̃ was generated by random node sampling
or random edge sampling, (3) the number of nodes and edges
in G, and (4) the fraction p and identities of nodes or edges
sampled from G to produce G̃ (as described in Section II-B).

Random Edge Sample. Suppose that G̃ was generated by
sampling p fraction of edges uniformly at random from the
edges in G. Then estimating the underlying degree distribution
of G reduces to solving the following problem:

B(0, 1) B(0, 2) ... B(0, D)
B(1, 1) B(1, 2) ... B(1, D)
B(2, 1) B(2, 2) ... B(2, D)

...

B(D̃, 1) B(D̃, 2) ... B(D̃,D)



c1
c2
...
cD

 =


c̃0
c̃1
...
c̃D̃

 , (1)

where B(i, j) is the probability that a node with degree j in
G has degree i in G̃. These values come from the binomial

distribution and are calculated as: B(i, j) =

(
j
i

)
pi(1−p)j−i.

D and D̃ represent the maximum node degrees in G and
G̃. D is not known, so MAXREACH sets D = 2 D̃

p to be a
reasonable upper bound on this degree. ci and c̃j represent,
respectively, the number of nodes with degree i in G and the
number of nodes with degree j in G̃. Because we know the
number of nodes in G, we set c̃0 to be the number of nodes
not present in G̃. (Assuming all nodes have degree at least 1
in G; if not, the expression above can be trivially modified.)

We wish to estimate the ci values, but this problem is
underdetermined. One can instead solve a constrained least-
squares problem using convex optimization, such as is de-
scribed in [13], but this can be slow. Instead, MAXREACH uses
an iterative estimation procedure to estimate the ci values.

1See Section II-A for a discussion of why we do not assume that the degree
of each node can be obtained through the API.
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MAXREACH first sets the probability that a randomly se-
lected node has true degree i in G as q̂i = 1

D (that is, the initial
degree distribution is set to be the uniform distribution). Next,
MAXREACH performs several iterations.2 In each iteration,
for each node u in G̃ and for each possible true degree i, the
probability that node u has true degree i is calculated as:

Pr(du = i) =
q̂iB(i, d̃u)∑
j

q̂jB(j, d̃u)
(2)

Then by summing over all nodes in G̃ (recall that we assume
that MAXREACH knows the number of nodes in G, so this
sum includes those nodes which are not directly observed, and
thus have degree 0 in G̃), and dividing by the total number of
nodes, MAXREACH updates q̂i, the estimated probability that
a randomly selected node from G has true degree i. These
probabilities are then used in the next iteration.

Through this process, MAXREACH estimates the degree
distribution of the underlying network.

MAXREACH obtains high-quality degree estimates, as mea-
sured by the K-L divergence between the estimated and true
degree distributions. To compare, we estimate degrees naively
by multiplying the observed degree of each node by 1

p , which
is the expected value of the node’s true degree. MAXREACH
obtains a mean K-L divergence of 0.2 (stdev of 0.16) from the
true distribution, 24x-430x better than the naive method.

Random Node Sample. A random node sample contains
two types of nodes: those selected during sampling, and their
neighbors. If MAXREACH used only the selected nodes, then
the tail end of the distribution would be ignored, because
networks tend to have few high degree nodes.

MAXREACH instead focuses on the nodes that were not
sampled. For such a node, its expected observed degree
matches the case when p fraction of the edges were sampled
(as in a Random Edge sample). By considering only these
nodes, MAXREACH performs a process identical to the above.

B. Estimating Mean Clustering Coefficient vs. Degree

MAXREACH estimates the relationship between clustering
coefficient and degree (this relationship exists as shown in
[11]). The clustering coefficient of a node is the fraction of its
neighbor-pairs that are connected; i.e., for a node u, it is the
number of triangles (u, v, w) that u participates in divided by
the number of wedges (u, v), (u,w) centered on u.

MAXREACH estimates C(d), the mean clustering coeffi-
cient for nodes with degree d in G. To do this, for each node
u in G̃, MAXREACH estimates its true degree du in G using
the procedure above. Next, MAXREACH estimates that node’s
clustering coefficient in G, as below.

Random Edge Sample. Suppose p fraction of edges from
G were sampled to produce G̃. For a node u in G, for each
wedge (v, u), (u,w) centered on u, there is a p2 probability
that the wedge is preserved in G̃. For each triangle (u, v, w),
there is a p3 probability that the triangle is preserved in G̃.

2In our experiments, five iterations proved sufficient.

Thus, to estimate u’s clustering coefficient in G, we divide its
observed clustering coefficient by p.

By estimating each node’s true degree (as above) and
performing this calculation, MAXREACH obtains C(d), the
mean clustering coefficient for each estimated true degree d.

Note that MAXREACH can only estimate C(d) for values d
such that some node in G̃ actually has estimated true degree
d. For other values d′, we estimate C(d′) as being equal to
C(d) for the value of d closest to d′ on which C is defined.

Random Node Sample. To estimate the C(d) values when
G̃ was produced by random node sampling, MAXREACH
groups the nodes into two sets: those selected during sampling
(whose neighborhoods are known), and their neighbors.

First consider nodes in the first category. To calculate the
clustering coefficient for such a node u, MAXREACH keeps a
wedge count W̃ and a triangle count T̃ . MAXREACH iterates
over all neighbors v of u such that v was also selected during
sampling. In each iteration, MAXREACH increments W̃ by
du − 1, which is the number of wedges (v, u, w) that v
participates in with u, and increments T̃ by the number of
triangles (v, u, w) that v participates in with u. T̃ /W̃ gives an
unbiased estimate of node u’s true clustering coefficient.

For nodes in the second category, MAXREACH uses a
process similar to the case of Random Edge sampling. For
a node u in this category, a triangle (u, v, w) from G survives
in G̃ only if v and w were both selected during sampling.
Similarly, wedge (v, u, w) from G is present in G̃ only if v
and w were both sampled. This occurs with probability p2,
so the clustering coefficient of node u in G̃ is an unbiased
estimate of its clustering coefficient in G.

By estimating the true clustering coefficients of each node
in G̃, and by estimating each node’s true degree in G,
MAXREACH is able to estimate the C(d) values.

C. Node Statistics
The score of a node depends on the particular probing

scenario being considered, and uses the following values:
• d̂u is u’s estimated true degree in G.
• dout is the estimated number of u’s neighbors outside G̃.
• dinu is the estimated number of nodes in G̃ that u is

adjacent to in G. This includes:
– dknown

u , the number of nodes in G̃ that we already
know to be adjacent to u.

– dunknown
u , the estimated number of nodes in G̃ that

u is connected to in G, but not in G̃ (i.e., the
connections to u that have not been observed).

MAXREACH estimates doutu as:
doutu = d̂u − dinu = d̂u − dknown

u − dunknown
u . (3)

Using the estimated degree distribution, MAXREACH ob-
tains estimates the degree d̂u for each node u through appli-
cation of Bayes’ Theorem. Suppose node u in G̃ has observed
degree d̃u. Then the expected true degree d̂u of u in G is:

d̂u = E[du] =

∑
i

iq̂iB(i, d̃u)∑
j

q̂jB(j, d̃u)
, (4)
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where the sum is over all possible degrees i, and q̂i is the
estimated probability that a random node has degree i in G.

dknown
u is equal to d̃u. dunknown

u is estimated using the
estimated clustering coefficients of its known neighbors. Sup-
pose that node u has neighborhood Nu in G̃. Each of u’s
neighbors v has an estimated true degree d̂v and estimated
clustering coefficient C(dv). Let Nv be the neighborhood of v
in G̃. MAXREACH uses the clustering coefficient of node v to
estimate the number of v’s neighbors to which u is connected.

Random Edge Sample. Suppose that (u, v), (v, w) ∈ G̃,
and (u,w) /∈ G̃. Then MAXREACH estimates the probability
that u and w are neighbors in G, given the estimated clustering
coefficient C(dv) of v and the fact that no edge between the
two was observed in G̃, as Pr((u,w) ∈ G) = (1− p)C(dv).

By summing over all such nodes v and neighbors w
(which are not known neighbors of u), MAXREACH estimates
dunknown
u , the number of nodes in G̃ to which u is connected

in G but not in G̃, and from Eq. 3, gets doutu .
Random Node Sample. Suppose that (u, v), (v, w) ∈ G̃,

and (u,w) /∈ G̃. Furthermore, suppose that u and w were
not selected during the sampling process that generated G̃
(because if they were, MAXREACH would know that they are
not connected). Then using the clustering coefficient C(dv) of
v, MAXREACH estimates a C(dv) probability that (u,w) ∈ G.

By summing these probabilities over all neighbors v of u,
and over all neighbors w (where w was not selected during
sampling), MAXREACH estimates dunknown

v , and thus doutu .

V. MAXREACH PROBING STAGE: NODE SCORES AND
UPDATES

Using the node statistics above, MAXREACH assigns each
node a score dependent on the probing scenario. The goal of
MAXREACH is to select a node for probing that will maximize
the number of new nodes observed through probing.

As information is obtained, scores are updated. Suppose
MAXREACH probes node u, and one or more edges (u, v) are
observed. We refer to the nodes adjacent to a returned edge
as ‘affected’. MAXREACH updates the degree estimates for
affected nodes, as well as their dunknown

v values.

A. Node Scoring
All-Neighbor Probing: In this probing scenario, when a

node is probed, all of its edges are observed. Thus, the score
that MAXREACH assigns node u is simply its doutu value.
k-Neighbor Probing, No Replacement: MAXREACH as-

signs node u a score of k
dout
U

d̂u−dknown
u

. The numerator is the

number of edges leaving G̃, and the denominator is the
total number of unobserved edges. This score represents the
estimated number of neighbors outside of G̃ that will be
observed in k draws.

k-Neighbor Probing, With Replacement: MAXREACH

assigns node u a score equal to Dist(k, du)
dout
u

d̂u
, where

Dist(k, d̂u) is the number of distinct elements expected to be
observed in k draws from a population of size d̂u. Dist(k, d̂u)
is calculated as a well-known variation on the birthday para-
dox, and can be calculated as k[1− (1− 1

d̂u
)k].

Connection Charge Probing, No Replacement: In this
probing scenario, MAXREACH requests some number k of
returned edges, and must pay r units for each edge requested,
as well as a connection charge of c. From k edges, the
estimated number of edges leading outside G̃ is k

dout
u

d̂u−dknown
u

,

so the average value per unit cost is k
c+rk

dout
u

d̂u−dknown
u

. The

maximum of this occurs when k = d̂u. MAXREACH assigns
node u a score of d̂u

c+rk
dout
U

d̂u−dknown
u

. When a node u is selected

for probing under this scenario, d̂u probes are requested.
Connection Charge Probing, With Replacement: This

probing scenario is the same as the above, but we are not
guaranteed to get a different edge back with each request.
MAXREACH finds the positive value of k that maximizes

Dist(k, d̂u)

c+ rk

doutu

d̂u
, (5)

where Dist(k, d̂u) = k[1− (1− 1
d̂u

)k].The score of each node
u is determined using this number of requested edges.

B. Updating Estimated Degrees

Probing Without Replacement. In Section IV-C,
MAXREACH estimated the true degree du of every node
u by using Bayes’ Theorem, given the estimated degree
distribution of G and the observed degree d̃u of u in G̃
before probing. A similar method is used to update node u’s
estimated degree, except that in Eq. 4, the sum is only taken
over degrees i ≥ ˜dobsu + dprobingu , where dobsu is the total
observed degree of node u).

This update is performed for all affected nodes.
Probing With Replacement. MAXREACH uses the number

of times each node has been selected for probing, and how
many duplicate edges were observed from those probes.

Let kr be the total number of (possibly non-unique) edges
of u that have been observed by probing u, and let k be the
number of unique edges of u that have been observed when
probing u. MAXREACH uses the following equation:

E[du] =

∑
i

iq̂iS(kr, k)Nki
−krB(i, d̃u)∑

j

q̂jS(kr, k)Nkj
−krB(j, d̃u)

. (6)

S(kr, k) is the Stirling number of the second kind,3 and Nk is
defined as (N)(N−1)(N−2)...(N−k+1). S(kr, k)Nkd

−kr

is the probability of observing k distinct elements in kr draws
from a population of size d.

As with probing without replacement, the sum is taken over
all i greater than or equal to the current observed degree of
node u, and this update is performed for all affected nodes.

C. Updating Estimated Connections Into and Out of G̃

When a new edge (u, v) is observed, various values can be
updated. dknown

u and dknown
v represent the observed degrees

of u and v, so both of these are incremented. dunknown
u and

dunknown
v are recalculated using the process in Section IV-C.

3This is the number of ways to divide A elements into k non-empty subsets.
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Type Network #Nodes #Edges Trans. # CC
Comms Enron Emails 84K 326K 0.08 950
Comms Yahoo! IM 100K 595K 0.08 360
Comms Twit. Replies 261K 309K 0.002 11K
Comms Twit. Retweets 40K 46K 0.03 4K
Co-occ. Amazon 270K 741K 0.21 4K
Co-occ. DBLP 317K 1M 0.31 1

TABLE II
Datasets used in our experiments. ‘Trans.’ is transitivity, and ‘CC’ is # of

connected components.

D. Removing a Node from Consideration

When we know that a node has no further edges to observe,
it is not probed again. Similarly, when G̃ was generated by a
Random Node sample, some nodes were fully explored, and
are never selected for probing.

VI. EXPERIMENTAL SETUP

Our experiments demonstrate that MAXREACH outperforms
baseline algorithms with respect to maximizing the number of
nodes brought into the network.

There are five aspects of the experimental setup: the dataset
(Table II), the sampling method used to generate the in-
complete network G̃ (Section VI-A), the probing scenario
(Section VI-C), the probing budget (Section VI-C), and the
baseline strategies (Section VI-B).

A. Sample Generation

In real applications, MAXREACH is given an incomplete
network. Here, we generate incomplete networks using Ran-
dom Node and Random Edge sampling (Section II-B).

B. Comparison Strategies

We use three baseline strategies: High Degree, Low Degree,
and Random probing. High Degree and Low Degree probing,
respectively, assign each node a score equal to its degree or the
inverse of its degree, and the highest-scoring node is probed.
Random probing selects a random node.4

When probing without replacement, a strategy learns that a
node has no further edges when a probe returns fewer edges
than expected. Similarly, in the All-Neighbor probing scenario,
none of the strategies probe the selected node again.

When probing with replacement, scores are modified to
reflect the probability of getting a new edge. We multiply each
node u’s score by pu, the ratio between the expected number
of unobserved edges and the MLE of the total number of edges
du of node u, calculated as described in [9].

With Connection Charge probing, the strategies estimate
each node’s degree, as in Section IV. When probing without
replacement, each strategy requests edges equal to a node’s
estimated unobserved degree. When probing with replacement,
each strategy requests edges according to Eq. 5.

4When the initial G̃ was generated by a Random Node sample, the strategies
do not request nodes that were fully explored during sampling.

C. Probing Scenarios and Budgets

We consider the probing scenarios from Section II-A. Note
that the probing scenario is a function of the API, and is
generally not determined by the user. We calculate a maximum
probing budget, and then conduct probes ranging from 0 to this
maximum budget, and consider quantiles over this range.

To set the maximum budgets, we use the following methods:
All-Neighbor Probing The maximum budget is set to the

number of nodes in the initial G̃ that can be probed.5

k-Neighbor Probing For each node in G̃, we calculate the
number of unobserved edges adjacent to that node. We divide
this value by k (the number of edges returned) to obtain the
maximum budget. We consider values of k from 1 to 1000.

Connection Charge Probing For each node in G̃, we
calculate the minimum cost to observe all its edges: c + rd,
where c is the connection charge, r is the edge charge, and d
is its unobserved degree. The maximum budget is the sum of
these costs over all nodes in G̃. We set c = 5 and r = 1.

VII. RESULTS AND DISCUSSION

Our results demonstrate that over a range of probing sce-
narios and datasets, MAXREACH outperforms the baselines
described in Section VI-B by a wide margin. As an example,
Figure 1 depicts results on a Random Edge sample of the En-
ron network under the 5-Neighbor, With Replacement probing
scenario. MAXREACH is consistently better than the baselines.

A. All-Neighbor Probing

We generate histograms showing aggregate results of
MAXREACH over the baselines, over all networks and probing
budgets. For a given G̃ and budget b, we calculate the log-ratio
of the number of nodes added to G̃ by MAXREACH vs. by a
baseline strategy. Positive log-ratios indicate that MAXREACH
outperformed the baseline.6

A histogram of these log-ratios, over all networks and
budgets, is shown in Figure 3 for G̃ produced by a Random
Edge sample. The values in boxes state the means and standard
deviations of the log-ratios. Results are similar for the case of
a Random Node sample. Note that MAXREACH outperforms
every baseline, on every network, at every probing budget.

B. k-Neighbor Probing

We cannot present such histograms for each of the k-
Neighbor probing scenarios, as we consider too many values
of k. Instead, we only show the means (i.e., the numbers in
boxes in Figure 3) for different values of k. Positive values
indicate that MAXREACH outperformed the baseline.

Figure 4 depicts results for k-Neighbor, No Replacement
probing with Random Node sampling (other results were
similar). All values are positive: on average, MAXREACH
outperforms the baselines. As k increases, the probing scenario
becomes All-Neighbor probing, so the values stabilize.

5This is simply the number of nodes in G̃. If G̃ was produced by Random
Node sampling, we do not include nodes already sampled.

6We use log-ratios because when MAXREACH is better than a baseline, the
log-ratio has the same magnitude as the case when the baseline is better than
MAXREACH by the same amount.
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Fig. 3. Histogram of log-ratios (with mean and stdev) of nodes added by
MAXREACH vs. baselines. Probing was conducted on 10% Random Edge
samples, under All-Neighbor probing. MAXREACH outperforms all baselines.

Fig. 4. Mean log-ratio of number of nodes added to G̃ by MAXREACH (MR)
vs. baseline strategies. Probing was conducted on Random Node samples,
without replacement, with k-Neighbor probing, for varying values of k.
MAXREACH outperforms all baselines. See text for explanation of trends.

C. Connection Charge Probing

MAXREACH performs substantially better than all consid-
ered baselines, over different probing budgets and network
datasets. For example, on Random Edge samples, MAXREACH
outperforms Low Degree probing by a mean log-ratio of 1.29
(stdev of 0.9), High Degree probing by 3.11 (stdev of 1.3),
and Random probing by 0.86 (stdev of 0.49).

D. Running Time

MAXREACH is typically slower than the three baseline
methods. This is partly because it adds many new nodes to
G̃, so more updates are needed. This can be controlled for by
calculating the number of new nodes observed per second.

Under All-Neighbor probing, High Degree probing is
fastest, observing up to 100x more nodes per second, but under
k-Neighbor probing, MAXREACH is slower only by a factor
of 3x, and is similar to the other baselines. For example, on
the Twitter Replies network, under 20-Neighbor probing, With
Replacement, MAXREACH observes 1100 new nodes/second,
while High Degree probing observes 2400 nodes/second. Of
course, per unit of budget, MAXREACH is the best.

VIII. RELATED WORK

There is a rich literature on sampling graphs. Avrachenkov
et al. [2] use queries to locate high-degree nodes, and O’Brien
and Sullivan [8] use local information to estimate core num-
bers. Hanneke and Xing [4], and Maiya and Berger-Wolf [6]
examine online sampling for centrality measures. Cho et al. [3]
determine which URLs to examine in a Web crawl. In the
network completion problem, one attempts to infer missing
parts of a network given a small subset [7], [5] or infer network
structure from diffusion information [12].

MAXREACH is based on MAXOUTPROBE, by the same
authors [10]. Unlike MAXREACH, MAXOUTPROBE cannot
probe nodes as they are added to the network. The Maximum
Expected Uncovered Degree sampling method [1] is also
related to MAXREACH. In each step, MEUD expands the node
with the highest expected degree, but requires knowledge of
the true degree of each node.

IX. CONCLUSIONS

We discussed the problem of determining which nodes in an
incomplete network to probe in order to maximize the number
of new nodes observed. We presented MAXREACH, which
estimates the degree of each observed but unexplored node,
as well as the clustering coefficients of nodes, in order to rank
nodes for probing. Over a range of realistic probing scenarios,
on networks from diverse domains, MAXREACH outperforms
several baseline approaches at the task of adding as many
nodes as possible to the network.
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