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Abstract—Throughout many scientific and engineering fields,
including control theory, quantum mechanics, advanced dynam-
ics, and network theory, a great many important applications
rely on the spectral decomposition of matrices. Traditional
methods such as the power iteration method, Jacobi eigenvalue
method, and QR decomposition are commonly used to compute
the eigenvalues and eigenvectors of a square and symmetric
matrix. However, these methods suffer from certain drawbacks:
in particular, the power iteration method can only find the leading
eigen-pair (i.e., the largest eigenvalue and its corresponding
eigenvector), while the Jacobi and QR decomposition methods
face significant performance limitations when facing with large
scale matrices. Typically, even producing approximate eigen-
pairs of a general square matrix requires at least O(N3) time
complexity, where N is the number of rows of the matrix.

In this work, we exploit the newly developed memristor
technology to propose a low-complexity, scalable memristor-
based method for deriving a set of dominant eigenvalues and
eigenvectors for real symmetric non-negative matrices. The time
complexity for our proposed algorithm is O(N

2

∆
) (where ∆ gov-

erns the accuracy). We present experimental studies to simulate
the memristor-supporting algorithm, with results demonstrating
that the average error for our method is within 4%, while its
performance is up to 1.78X better than traditional methods.

I. INTRODUCTION

As Moore’s law is reaching its physical limits, the ben-
efits obtained by technology scaling on planar CMOS will
diminish. On the other hand, since we have entered the era of
big data, the demands of lower latency and higher computing
speed of integrated circuits have been consistently increasing.

The memristor is a newly developed electronic device that,
among other important features, allows for hardware-level
implementation of extremely fast matrix-vector multiplications
and solving of systems of linear equations, and outperforms
FPGAs and GPUs in many cases and applications [1]–[4].
Specifically, initializing memristor in real-time to represent
a matrix can be potentially done in O(N) time complexity
using the proposed parallel writing scheme in [5], and once
initialized, matrix-vector multiplication itself can be done in
O(1) time. The memristor technology has already proven to
be of great value in areas such as deep learning.

In this work, we present the first memristor-based technique
for fast and accurate eigen-pair finding. The eigen-pair finding
problem is vital to many problems within the science and
engineering fields. This task is generally fulfilled using clas-
sical methods like the power iteration [6], Jacobi eigenvalue

method [7], and QR decomposition [8]. These methods have
two shortcomings: 1) They have relatively high computational
complexity (at least O(N3)), and 2) They lack flexibility: they
either find only the largest eigen-pair or all eigen-pairs. Some
applications, like spectral clustering and principal component
analysis, require a set of eigenvalues and their eigenvectors. In
other words, finding the largest eigen-pair is not enough, but
finding all eigen-pairs is more than necessary. One solution is
to apply deflation techniques in combination with the power
iteration method to find a set of leading eigen-pairs, but this
technique incurs additional complexity [9].

To address these problems, we propose a low-complexity,
scalable, and flexible memristor-based sweeping method for
deriving approximate eigenvalues and eigenvectors for real
symmetric non-negative matrices. With this fast and accurate
eigen-pair finding method, one can immediately scale up
the matrix application algorithms. This type of matrix is
important in different areas including social network analysis,
where non-negative, symmetric matrices represent adjacency
matrices of undirected graphs. The proposed eigen-pair finding
method is fast and flexible, allowing the user to find as many
or as few leading eigen-pairs as desired. Our contributions are
summarized as follows:
• We introduce a novel memristor crossbar-based sweeping

algorithm for finding all (or a specified number of lead-
ing) eigen-pairs for real symmetric non-negative matrices
with complexity O(N

2

∆ ), where ∆ governs accuracy.
• We discuss in details how one can implement the sweep-

ing algorithm on a memristor crossbar.
• We conduct experimental studies to simulate memristor

supported hardware and evaluate our proposed method
on the simulation platform. Simulation results indicate a
large performance gain with low accuracy loss.

II. BACKGROUND & RELATED WORK

In this section, we first describe background related to the
previous work on matrix eigen-pair finding, and then describe
the background of memristor-based matrix operations.

A. Eigen Decomposition

Finding a matrix’s leading eigenvalue and corresponding
eigenvector is often done via the power iteration method. To
use the power iteration method for finding more eigenvalues,



one must perform a series of matrix deflation operations [9]
in each round, which removes the leading eigen-pair and thus
allows the power iteration method to find the next eigen-pair.

The Lanczos method is another option, which can be used
to find larger quantities of eigenvalues and eigenvectors [10].
The Jacobi, Rayleigh quotient iteration [11] and the QR
decomposition methods [12], [13] are also commonly used to
find eigenvalues and eigenvectors, and, unlike the power itera-
tion and Lanczos method, find all eigenvalues simultaneously.
However, the computational complexities for these techniques
can be large: Using the power iteration and Lanczos method
to find the largest pair of eigenvalue and eigenvectors requires
O(N2) complexity, and when used with deflation to produce
a set of eigen-pairs, the complexity is increased to O(mN3),
where m is the number of required eigenvalues. The QR
decomposition requires O(N2) and 6N3 +O(N2) complexity
to produce all eigenvalues and all eigen-pairs, respectively, and
the Jacobi method and Rayleigh quotient iteration also have
cubic computational complexity.

B. Memristors and Crossbar Arrays
Initially proposed by Leon Chua in 1971, and created by HP

Labs in 2008, a memristor is an electrical component with the
capacity to ‘remember’ the historical profile of excitations on
the device. Specifically, the state (memristance) of a memristor
will change when voltage higher than a threshold voltage,
i.e., |Vm| > |Vth|, is applied at its terminals. Otherwise,
the memristor behaves like a resistor, with features such as
non-volatility, low-power, high density, and excellent scal-
ability [14], [15]. In this work, we take advantage of the
ability to connect memristors together into a crossbar array.
By applying voltages at different input locations of this array
and observing the output voltages, we can efficiently calculate
matrix-vector products in the analog domain. Specifically, once
the crossbar memristances are set, matrix-vector multiplication
and linear equation solving can be performed in O(1) time
complexity [1], [2], [16], [17]. Using the parallel writing
scheme in [5], the memristor can potentially be set in O(N)
time. Thus, multiplication and linear equation solving are
fast even if the matrix must be initialized; and if the matrix
has been initialized earlier, these operations can be done
in constant time. Memristors have been critical to research
on neural networks (e.g., neuromorphic computing) [18],
[19], as well as other areas like pattern recognition [20], text
recognition [21], random number generation [22], and the dot-
product engine [23]. In general, memristor-based algorithms
for the above applications are evaluated using simulation or
emulation, due to limited access to memristor technology.

III. PROPOSED METHOD
In this section, we first introduce the design of our proposed

sweeping algorithm, then discuss how to accelerate our method
by implementing it on a memristor crossbar. We end with a
discussion of the time complexity of our proposed method.

A. Sweeping Based Eigen-pair Finding Method
Consider an N -by-N non-negative, non-singular, symmetric

matrix M. We begin with the following observation:

Observation 1: Suppose b is a vector of random numbers in
the range [0, 1]. Define xβ as the solution to (M−βI)xβ = b.
Then if λ is an eigenvalue of M, as β approaches λ, ||xβ ||∞
approaches ∞. Thus, if we define a small step-size ∆, then if
we initialize β to be an upper bound on the largest eigenvalue
of M and gradually decrement β by ε to ‘sweep’ across the
range of potential eigenvalues, then by repeatedly solving the
problem (M−βI)xβ = b. and examining ||xβ ||∞, we can
identify the eigenvalues of M.

Figure 2 depicts this relationship on a a toy 10×10 random
symmetric non-negative matrix, where β is decremented by
0.01 in each step. The value of ||xβ ||∞ varies with β,
and forms peaks at certain locations. When we examine
the locations of these peaks, we find that every peak (and
corresponding β) corresponds to an eigenvalue of the target
matrix. We observed this property over a large set of random
and real matrices. Thus, if we have the upper bound for matrix
M’s eigenvalue distribution and the number of desired eigen-
values, and find the β values such that max(xβ) forms a peak,
then these β’s are approximate eigenvalues of M.

Fig. 1. max(xε) vs. ε on a non-negative matrix. The peaks of the curve
occur at values of ε corresponding to eigenvalues of the matrix. Black lines
indicate true eigenvalues.

Algorithm: This observation naturally leads to a sweeping
algorithm to approximately identify all or a set of leading
eigenvalues of a matrix M, as presented in Algorithm 1.
This algorithm requires four input parameters: a non-negative
square symmetric matrix M; the searching interval [L,U ],
which contains all eigenvalues of matrix M; the step decre-
ment value ∆1, and the number k of eigenvalues desired.

To set L , we follow Gershgorin’s Circle Theorem [24],
which finds L by taking the sum of the absolute values of the
off-diagonal elements in each row, and adding the diagonal
element in that row to that sum2. U can be found equivalently
by negating M.

After setting all necessary parameters, the sweeping al-
gorithm searches for eigenvalues within the interval in the
range [L,U ]. First, the algorithm creates a random positive
vector b, and then performs a series of iterations to locate
the eigenvalues. The algorithm first steps with β = U , and

1According to our experimental studies, we suggest a ∆ around 0.01 to
0.05.

2Note that because we consider only non-negative matrices, this value is
simply the sum of the row.



Algorithm 1 Sweeping-Based Eigenvalues Search Method
Input:

Matrix, M
Sweeping Interval, [L,U ]
Fixed Increment, ∆
Number of Eigenvalues required, N

Output:
Set of Eigenvalues, E.

1: β ← U
2: Solve the Linear Equation (M− βI)x = b
3: EigNum← 0, x0 ← −1, x1 ← −1
4: x0 ← max(x)
5: while EigNum ≤ N and β > L do
6: β ← β −∆.
7: Solve Linear Equation (M− βI)x = b
8: x′ ← max(x)
9: if x0 6= −1 and x1 6= −1 and x0 ≤ x′ and x′ ≥ x1

then
10: N ← N − 1, E ← E ∪ {β}
11: x0 ← x1, x1 ← x′

12: end if
13: end while
14: return E;

in each iteration: (i) decreases β by the fixed decrement ∆,
(ii) solves the problem (M − βI)xβ = b, and (iii) records
||xβ ||∞ as x′β . The algorithm then finds those x′β values where
x′β−∆ ≤ x′β and x′β ≥ x′β+∆ (in other words, the local
peaks). This procedure continues until k such values have been
obtained, and the resulting eigenvalues are stored within the
set E. Because β begins at U and is decremented until it
reaches L, these are the leading eigenvalues. The eigenvalues
detected by this method are approximate, not exact, with the
error depending on step size ∆. As ∆ decreases, the accuracy
and running time increase. For instance, the running time of
finding eigen-pairs with accuracy 0.01 is five times slower than
finding eigen-pairs with accuracy 0.05.

To find the corresponding eigenvectors, we adopt the Inverse
Iteration method [25]. We create a random vector v0, and
repeat the following until convergence:
• Define wi+1 to be the solution to (M− λ′I)wi+1 = zi.
• Set zi+1 = wi+1

||wi+1||∞ . The infinity norm is simply the
largest absolute value of an element in the vector.

In this way, we obtain the set of leading eigenvalues and
corresponding eigenvectors. The divergence of maximum com-
ponents near eigenvalues can be proven through application
of Cramer’s Rule, but the scope and space constraints of this
paper prevent us from presenting the proof here.

B. Implementation on the Memristor Crossbar

The sweeping method requires solving the linear equation
(M − βI)x = b at each iteration. This can easily be imple-
mented using a memristor crossbar involving two operations:
1) Mapping matrix (M − βI) and vector b onto memristor
crossbar and 2) solving the linear equation (M − βI)x = b
using memristor crossbar. We map the matrix using the parallel
writing scheme described in [5] in O(N) time, and once
mapped, the crossbar solves the linear equation in O(1) time.
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VI

rs rs rs rs rs rs rs
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VI,2
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75 31 13 8
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Fig. 2. The memristor crossbar structure and an example of matrix mapping

Here, we show how these two operations can be implemented
using a memristor crossbar.

A typical N ×N memristor crossbar is illustrated in Fig. 2.
A memristor is connected between each pair of horizontal
word-lines (WL) and vertical bit-lines (BL). This structure can
be implemented with a small footprint, and each memristor can
be re-programmed to different resistance states by applying
biasing voltages at its two terminals [2], [16]. To perform
matrix-vector multiplications, we apply a vector of input volt-
ages VI on the WLs and collect the current through each BL
by measuring the voltage across resistor Rs with conductance
of gs. Suppose that the memristor at the connection between
WLi and BLj has a conductance of gi,j . Then the output
voltages are represented by VO = C × VI. Here, each
coefficient Cij of matrix C is (approximately) proportional
to the conductance gi,j [1], [4]. Here, C is represented by the
conductance of memristor.

C = D ·G = diag(d1, · · · , dN ) ·

g1,1 · · · g1,N

...
. . .

...
gN,1 · · · gN,N


T

(1)
where, di = 1/(gs +

∑N
k=1 gk,i).

Previous work [26] has demonstrated that we can use a
fast and simple approximation gi,j = ci,j · gmax to map the
above matrix onto a memristor crossbar, in which gmax is the
largest value of G. Hence, when we want to calculate matrix-
vector multiplication y = Mx, we can set M = gmaxC and
y = gsVO, and the solution is: x = gs/gmaxVI.

In the opposite direction, the memristor crossbar structure
can solve a linear system of equations, as required by our
algorithm [5]. A voltage vector VO is applied on each Rs of
BL, so the current flowing through each BL is approximated
as Io,j = gsVo,j . The current Io,j through BLj can also be
calculated as Io,j =

∑
j VI,igi,j . For each BLj , the equation

1
gs

∑
j VI,igi,j = Vo,j is mapped onto the crossbar. The

solution VI can be found by measuring voltages on the WLs.
One challenge in implementing the sweeping algorithm

using memristor crossbars is that a memristor crossbar only
allows square matrices with nonnegative entries. By assump-
tion, matrix M is a square matrix with nonnegative elements;
however, matrix (M − βI) may have negative elements on
the diagonal, depending on the value of β. Thus, inherent
hardware limitations prevent the direct mapping of this matrix
into the memristor crossbar. To overcome this problem, if the



input matrix contains negative elements, the linear equation
(M − βI)x = b will be converted to another equation using
the technique in [27]. If A = (M− βI), the conversion is as
follows (from Eqn. (2) to Eqn. (3)):A1,1 · · · A1,N

...
. . .

...
AN,1 · · · AN,N

×
 X1

...
XN

 =

 b1
...
bN

 (2)



0 · · · A1,N −A1,1 · · · 0

...
. . .

...
. . .

...
AN,1 · · · 0 0 · · · −AN,N

1 · · · 0 1 · · · 0

...
. . .

...
. . .

...
0 · · · 1 0 · · · 1


×



X1

...
XN

−X1

...
−XN


=



b1
...
bN
0

...
0


(3)

Note that currently, existing memristor crossbars are quite
small (e.g., 1024 x 1024). However, as with any new hardware
devices, this size is likely to increase in the future. Moreover,
the proposed method is intended as a core algorithm upon
which other algorithms can be built (e.g., a divide-and-conquer
version of this method) for larger-scale applications.

C. Complexity Analysis
The sweeping algorithm consists of three stages: (1) Cal-

culate the upper bound for performing eigenvalue searching;
(2) Perform the sweeping based eigenvalue-finding algorithm;
(3) Calculate corresponding eigenvectors using the inverse
method. We make the following assumptions:
• The input matrix M ∈ RN×N is a full-rank real matrix

with non-negative entries in the range [0, 1]3.
• The upper bound is set to be 1+max(D), and the lower

bound to −1 − max(D), where D = {d1, d2, ..., dn}
indicates the sum of each rows of matrix.

• The step increment is set to ∆.
For these three stages, we have the following analysis:

(1) Upper and Lower Bound Calculation: To calculate the
upper and lower bounds of the eigenvalues of matrix M ∈
RN×N with the Gershgorin Circle Theorem, we need to find
the sum of each row, which takes O(N2) time, and identify
the largest sum from all results, which takes O(N) time. The
total computation time is thus O(N2).
(2) Sweeping to Find Eigenvalues: The length of the sweeping
interval is O(D). Because we assumed that the elements in M
are in the range [0, 1], we have D ≤ N . The algorithm searches
in space [−D − 1, D + 1], with step size ∆, and hence the
total number of iterations is given by 2(1+max(D))

∆ ∼ O(N∆ ). In
each iteration, the time complexity of mapping M to crossbar
in O(N), and once mapped, the crossbar solves the linear
equation in O(1) [5]. Thus, the total complexity is O(N

2

∆ ).
(3) Eigenvector Calculation: Once k eigenvalues have been
found, the sweeping method uses the inverse iteration method
to approximate their corresponding eigenvectors. This requires
b · (O(N) + O(N)) ∼ O(b · N) complexity, where b is the
number of rounds before convergence (usually 2-4).

Based on this analysis, the complexity for the whole process
is O(N2) + O(α·N

2

∆ ) + O(b · N) ∼ O(N
2

∆ ), a significant

3If the matrix has values outside this range, it can be normalized with
elapsed time O(N2), which does not affect the overall complexity analysis.

improvement compared to existing eigen-finding methods.
Note that the complexity is governed by ∆, which controls
the tradeoff between accuracy and running time.

D. Algorithmic Improvements
There are numerous improvements that can be made to this

algorithm, such as finding repeated eigen-pairs, dynamically
selecting the step decrement value ∆, and using divide-and-
conquer techniques [28] to handle matrices too large to fit
on the crossbar. Due to space and scope limitations, we focus
this paper on the core sweeping algorithm and implementation
details, and present algorithmic improvements separately.

IV. EXPERIMENTAL STUDIES

We conduct three sets of experimental studies to evaluate
the proposed method: (i) experiments to measure the accuracy
of the identified eigen-pairs, (ii) running time experiments and
(iii) energy efficiency comparison experiments.

A. Experiment Setup
In our first set of experiments, we evaluate our sweep-

ing algorithm on synthetic matrices of sizes 1000×1000,
5000×5000, and 10000×10000, and three real world network
adjacency matrices (Dolphins, Facebook, Robots [29]). We
compare the results obtained by our proposed method to those
produced by MATLAB’s eigen-pair functions. Separately, we
introduce random matrix and vector errors to demonstrate
that our sweeping algorithm is not sensitive to potential
imprecisions that may occur in memristor devices. In each
round, a random vector (of the same size as x) and a random
matrix (of the same size as M) with elements in the range of
{−ε,+ε} are added to x and (M− εI), respectively.

Second, we compare the running time and energy consump-
tion rates between our sweeping algorithm and the QR de-
composition, where both algorithms have been boosted using
memristor (we show only results for the QR decomposition,
because this was the best standard method that we considered).

Third, we compare the energy consumption rate of the
sweeping algorithm with and without memristor boosting. We
design a memristor simulator to evaluate the efficiency of the
proposed methods. The Matlab-based memristor crossbar sim-
ulator is designed based on real memristor model (a fabricated
8 nm × 8 nm memristive device demonstrating fast switching
property of around 10 ns and more than 20,000 successful
operations) as proposed in [30], with power consumption per
switch of 3 Nano-watts. We run our experiments on a server
with Intel i7 6700HQ, 2.6 GHz CPU, 48G DDR4 memory,
and 512G SSD hardware. We use three evaluation metrics:
• V ALerr: The mean error between the eigenvalues de-

tected by the sweeping algorithm and the correspond-
ing actual eigenvalues. The inaccuracy for one specific
sweeping-produced eigenvalue λ and its corresponding
actual value λ′ is calculated as |λ−λ

′|
λ′

• V ECerr: The average error in the eigenvectors found by
the sweeping method. The error is calculated by ||v−v

′||
||v|| ,

where v′ is an eigenvector calculated by the sweeping
algorithm and v is the corresponding actual eigenvector.

• Energy Performance: The total energy consumption
calculated when executing the algorithms on our simula-
tion platform. The energy is calculated by E = Pcpu ∗



TABLE I
ACCURACY RESULTS FOR SWEEPING ALGORITHM BEFORE AND AFTER PERTURBATION– RANDOM MATRICES

Random Dataset Measure Percentage of Calculated Eigen-Pairs
5% 10% 15% 20% 25% 30% 50% 100%

1000×1000
V ALerr 5.0E-4 6.2E-4 6.7E-4 6.9E-4 7.3E-4 7.9E-4 1.0E-3 4.4E-3
V ALerr(p) 4.8E-4 6.0E-4 6.7E-4 6.9E-4 7.3E-4 7.9E-4 1.0E-3 4.4E-3
V ECerr 8.8E-3 3.5E-2 2.2E-2 1.7E-2 1.7E-2 1.4E-2 9.7E-3 8.6E-3
V ECerr(p) 1.8E-4 3.1E-2 2.6E-2 2.0E-2 1.7E-2 1.4E-2 9.6E-3 8.8E-3

5000×5000
V ALerr 1.0E-4 1.4E-4 2.8E-4 3.7E-4 4.1E-4 4.5E-4 9.8E-4 1.2E-3
V ALerr(p) 1.1E-4 1.4E-4 2.8E-4 3.6E-4 4.1E-4 4.5E-4 9.7E-4 1.2E-3
V ECerr 1.1E-6 2.1E-2 1.0E-2 7.0E-3 1.0E-2 1.4E-2 5.5E-2 4.8E-2
V ECerr(p) 8.0E-7 8.9E-2 4.5E-2 2.8E-2 2.3E-2 2.0E-2 5.4E-2 5.5E-2

10000×10000
V ALerr 1.3E-4 1.3E-4 1.7E-4 2.2E-4 2.6E-4 3.1E-4 4.7E-4 5.3E-2
V ALerr(p) 1.2E-4 1.3E-4 1.6E-4 2.2E-4 2.6E-4 3.1E-4 4.7E-4 5.4E-2
V ECerr 5.0E-4 5.0E-4 1.1E-2 1.1E-2 1.1E-2 2.0E-2 1.3E-1 1.4E-1
V ECerr(p) 5.3E-4 9.0E-4 1.1E-2 1.1E-2 1.0E-2 2.4E-2 1.3E-1 1.7E-1

TABLE II
ACCURACY RESULTS FOR SWEEPING ALGORITHM BEFORE AND AFTER PERTURBATION – REAL WORLD DATASETS

Real World Dataset Measure Percentage of Calculated Eigen-Pairs
5% 10% 15% 20% 25% 30% 50% 100%

dolphins
V ALerr 3.4E-4 6.3E-4 6.1E-4 5.6E-4 1.1E-3 2.6E-3 6.4E-3 1.4E-2
V ALerr(p) 7.6E-4 6.6E-4 5.8E-4 9.4E-4 1.5E-3 2.4E-3 6.4E-3 1.4E-2
V ECerr 6.7E-7 4.0E-7 3.5E-7 1.9E-6 1.8E-6 1.8E-6 3.0E-3 1.8E-3
V ECerr(p) 1.1E-6 6.4E-6 5.4E-7 3.5E-6 3.2E-6 3.1E-6 3.4E-3 3.3E-3

robots
V ALerr 6.6E-4 1.1E-3 1.2E-3 1.2E-3 1.1E-3 1.2E-3 1.2E-3 5.3E-3
V ALerr(p) 5.7E-4 1.1E-3 1.1E-3 1.2E-3 1.1E-3 1.2E-3 1.2E-3 5.3E-3
V ECerr 2.3E-6 1.0E-6 1.2E-5 3.4E-2 3.4E-2 3.8E-2 4.0E-2 8.2E-2
V ECerr(p) 1.9E-6 1.8E-6 9.1E-7 3.9E-2 3.8E-2 4.3E-2 4.2E-2 7.5E-2

Facebook
V ALerr 2.1E-4 4.0E-4 4.0E-4 3.9E-4 3.9E-4 4.1E-4 4.4E-4 4.5E-4
V ALerr(p) 1.7E-4 3.9E-4 3.9E-4 3.9E-4 3.9E-4 4.1E-4 4.4E-4 4.5E-4
V ECerr 2.3E-2 1.0E-2 4.1E-2 3.7E-2 1.86E-1 1.65E-1 1.73E-1 1.76E-1
V ECerr(p) 2.4E-2 1.8E-2 4.7E-2 4.2E-2 1.95E-1 1.80E-1 1.78E-1 1.78E-1

Tcpu + Pmem ∗ Tmem where Pcpu is the power specifi-
cation mentioned in [31] for selected CPU and Pmem
is the power consumption for executing computations on
the 8 nm × 8 nm memristive device [30]. Tcpu and Tmem
are the elapsed times for software and memristor.

B. Results and Discussion
We present our results in three parts: accuracy experiments

(both with and without hardware inaccuracies), performance
(running time) results, and energy consumption results.

1) Accuracy Experiments: The results of our accuracy
experiments are depicted in Table I and Table II, where
V ALerr (V ECerr) and V ALerr(p) (V ECerr(p)) represent,
respectively, the accuracy results for the detected eigenvalues
and eigenvectors found by the sweeping method, without and
with simulated perturbation errors. Table I shows results for
different sizes of synthetic matrices, while Table II presents
results for real world datasets. Our results show that:

First, our sweeping algorithm produces a set of leading
eigen-pairs with high accuracy. The average error over all
eigenvalues for all testing datasets is around 1%, and the
average error for producing all eigenvectors is approximately
7%. The accuracy for computed eigen-pairs is above 90%,
which is acceptable for many applications, such as PCA or
spectral clustering, that use eigen-pairs for further computing.

Second, we observe that the sweeping method is not sen-
sitive to perturbations, indicating that memristor imprecisions
do not have strong effect on its accuracy.

Third, the fewer leading eigenvalues we require, the higher
the accuracy. For example, on a random 1000×1000 matrix,
when we use the sweeping algorithm to produce 5% of
leading eigenvalues (i.e., top-50 eigenvalues), the eigenvalue

inaccuracy is 0.0005. However, when we identify the 25%
leading eigenvalues (i.e., top 250 eigenvalues), this error al-
most doubles. The inaccuracy reaches 0.0044 when we detect
all eigenvalues. This occurs because if ∆ is too large, it
may skip over eigenvalues. Eigenvalues tend to concentrate
near the central part of the distribution, resulting in higher
inaccuracy. However, many applications such as PCA and
spectral clustering only require a set of leading eigen-pairs.

2) Performance Experiments: The results of our second
experiment are shown in Figure 3, where the x-axis indicates
the matrix size and the y-axis shows the total running time.
Here, we set ∆ = 0.05. The text in the plots shows the
approximate accuracy of the algorithms for different tests.
The running time of our proposed method shows a significant
improvement over the QR decomposition, especially for larger
matrix sizes. For example, on a 10000x10000 matrix, the
elapsed time for sweeping method is 22.39s, while the elapsed
time for QR decomposition is 77.53s, a 3.4X improvement.
On average, the sweeping method is 1.78X faster than QR
decomposition method. The sweeping method also shows a
higher accuracy. The sweeping method is faster than the QR
decomposition, while matching or beating its accuracy.

3) Energy Consumption Experiments: Results for the third
experiment are listed in Table III, where the total energy
consumption for software-based sweeping algorithm and the
memristor boosted sweeping method in each test rounds are
shown. In all cases, the memristor boosted algorithm demon-
strates significant energy reduction as compared with software
implementation. For instance, the total energy consumptions
for software sweeping algorithm with matrix sizes 5000 and
10000 are around 55 and 165 times of that of the memristor
boosted one. The significant reduction in energy consumption



Fig. 3. Elapsed Time Comparison between the proposed Sweeping Algorithm
and the QR Decomposition based Method

TABLE III
ENERGY PERFORMANCE COMPARISON

Matrix Size with memristor (J) without memristor (J)
500× 500 4.60 24.74
1000× 1000 15.41 189.75
2000× 2000 68.46 1942.38
5000× 5000 385.02 21091.93
10000× 1000 1799.94 298431.12

indicates that the proposed method is suitable for implemen-
tation, and so is suitable for a variety of research fields.

V. CONCLUSION AND FUTURE WORK

We have proposed a novel sweeping algorithm for finding
eigen-pairs of a non-negative square matrix. Our proposed
method runs in O(N

2

∆ ) time.Additionally, our algorithm is
flexible, allowing the user to find only the desired number
of eigen-pairs. We demonstrated that our method can precisely
find sets of eigen-pairs with very low imprecisions, with a very
low elapsed time as compared to other methods and significant
energy consumption reduction as compared with software
methods. Experimental Results show that our proposed method
can achieve up to a 165× energy saving across matrix sizes.
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