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Abstract—The high computation and memory storage of large
deep neural networks (DNNs) models pose intensive challenges
to the conventional Von-Neumann architecture, incurring sub-
stantial data movements in the memory hierarchy. The mem-
ristor crossbar array has emerged as a promising solution to
mitigate the challenges and enable low-power acceleration of
DNNs. Memristor-based weight pruning and weight quantization
have been seperately investigated and proven effectiveness in
reducing area and power consumption compared to the original
DNN model. However, there has been no systematic investiga-
tion of memristor-based neuromorphic computing (NC) systems
considering both weight pruning and weight quantization. In
this paper, we propose an unified and systematic memristor-
based framework considering both structured weight pruning and
weight quantization by incorporating alternating direction method
of multipliers (ADMM) into DNNs training. We consider hardware
constraints such as crossbar blocks pruning, conductance range,
and mismatch between weight value and real devices, to achieve
high accuracy and low power and small area footprint. Our
framework is mainly integrated by three steps, i.e., memristor-
based ADMM regularized optimization, masked mapping and
retraining. Experimental results show that our proposed frame-
work achieves 29.81x (20.88x) weight compression ratio, with
98.38% (96.96%) and 98.29% (97.47 %) power and area reduction
on VGG-16 (ResNet-18) network where only have 0.5% (0.76%)
accuracy loss, compared to the original DNN models. We share
our models at anonymous link http://bit.ly/2Jp5LHJ .

I. INTRODUCTION

With the rise of artificial intelligence, Deep Neural Networks
have been widely used thanks to their high accuracy, excellent
scalability, and self-adaptiveness [1]. DNN models are becom-
ing deeper and larger, and are evolving fast to satisfy the diverse
characteristics of broad applications. The high computation and
memory storage of DNN models pose intensive challenges to
the conventional Von-Neumann architecture, incurring substan-
tial data movements in memory hierarchy.

To achieve high performance and energy efficiency, hardware
acceleration of DNNSs is intensively studied both in academia
and industry [2-9]. DNN model compression techniques, in-
cluding weight pruning [10-15] and weight quantization [16—
18], are developed to facilitate hardware acceleration by re-
ducing storage/computation in DNN inference with negligible
impact on accuracy. However, as Moore’s law is coming to an
end [19], the acceleration of the conventional Von-Neumann
architecture is limited to some extent.

To further mitigate the intensive computation and memory
storage of DNN models, the next-generation device/circuit
technologies beyond CMOS and novel computing architectures
beyond the traditional Von-Neumann machine are investigated.
The crossbar array of the recently discovered memristor devices
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(i.e., memristor crossbar) can be utilized to perform matrix-
vector multiplication in the analog domain and solve systems
of linear equations in O(1) time complexity [20, 21]. Ankit
et al. [22] implemented weight pruning techniques to NC sys-
tems using memristor crossbar arrays, which reduces the area
(energy) consumption compared to the original network. How-
ever, for hardware implementations on on-chip neuromorphic
computing systems, there are several limitations: (i) unbalanced
workload; (ii) extra memory footprint on indices; (iii) irregural
memory access. These will cause the circuit overheads in
hardware implementations. To address these limitations, Wang.
et al. [23] proposed group connection deletion, which prunes
connections to reduce routing congestion between crossbar
arrays.

On the other hand, Zhang. et al. [24] discussed the effec-
tiveness of using the quantized conductance in memristor in
multi-level logics. Song. et al. [25] investigated the generation
of quantization loss in the memristor-based NC systems and
its impacts on computation accuracy, and proposed a regu-
larized offline learning method that can minimize the impact
of quantization loss during neural network mapping. Weight
quantization can mitigate hardware imperfection of memristor
including state drift and process variations, caused by the
imperfect fabrication process or by the device feature itself.

Because weight pruning and weight quantization techniques
leverage different sources of redundancy, they may be com-
bined to achieve higher DNN compression. However, there
has been no systematic investigation of this effect in the
memristor-based NC systems considering both weight pruning
and weight quantization. In this paper, we propose an unified
and systematic memristor-based framework considering both
structured weight pruning and weight quantization, by incor-
porating ADMM into DNNs training. We consider hardware
constraints such as crossbar blocks pruning, conductance range,
and mismatch between weight value and real devices, to achieve
high accuracy and low power and small area footprint. Our
proposed framework can better mitigate the inaccuracy caused
by the hardware imperfection compared to only weight quan-
tization method [24, 25]. It contains memristor-based ADMM
regularized optimization, masked mapping and retraining steps,
which can guarantee the solution feasibility (satisfying all
constraints) and provide high solution quality (maintaining test
accuracy) at the same time. The contributions of this paper
include:

o We systematically investigate the combination of struc-
tured weight pruning and weight quantization techniques
leveraging different sources of redundancy, to achieve
higher DNN compression ratio and low power and area
in the domain of memristor-based NC systems.

o We adopt ADMM, an effective optimization technique for



general and non-convex optimization problems, to jointly
optimize weight pruning and weight quantization problems
during training for higher model accuracy.

We evaluate our proposed framework on different net-
works. Experimental results show that our proposed framework
can achieve 29.81x(20.88x) weight compression ratio, with
98.38% (96.96%) and 98.29% (97.47%) power and area reduc-
tion on VGG-16 (ResNet-18) network where only have 0.5%
(0.76%) accuracy loss, compared to the original DNN models.

II. BACKGROUND ON MEMRISTORS
A. Memristor Crossbar Model
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Fig. 1: (a) Memristor crossbar performs maxtrix-vector multiplication.
(b) Memristor model and its V-1 curve.

Memristor has shown remarkable characteristics as one
of the most promising emerging technologies as shown in
Figure 1 [26]. The memristor has many promising features,
such as non-volatility, low-power, high integration density, and
excellent scalability. Memristors can be formed as a crossbar
structure [27], as shown in Figure 1. Each pair of horizontal
Word-line (WL) and vertical Bit-line (BL) is connected across
a memristor device. Given the input voltage vector v; and the
weight matrix W which can be constructed by a preprogramed
crossbar array, the matrix multiplication result v, can be easily
obtained by measuring the current across the resistor Rg. By
nature, the memristor crossbar array is attractive for matrix
computations with high degree of parallelism which can achieve
the time complexity of O(1). Based on this superior feature,
the memristor-based computing system can provide a promising
solution to reduce the latency and improve the energy efficiency
of neuromorphic computation.

B. Hardware Imperfection of Memristor Crossbars and Miti-
gation Techniques

Hardware imperfection of Memristor is mainly caused by
the imperfect fabrication process or by the device feature itself.
These significant issues cannot be ignored in hardware design,
which is different from the software-based system design.

1) State Drift: Memristor device consists of a thin-film
structure, and the film is divided into two regions. One region
is highly doped with oxygen vacancies and another region is an
undoped. Applying an electric field across the device over time
would lead to the migration of oxygen vacancies and change
the memristance state, which is called state drift [28]. Thus,
after a certain number of read operations, the resistance of the
device will drift caused by the accumulative effect of applying
the same direction voltage. As a result of the state drift effect,
the imprecision will be incurred when the memristor’s state
drifts to the other state levels.

2) Process Variation.: Process variation is also phenomenal
as the process technology scales to nanometer level. It mainly
comes from the line-edge roughness, oxide thickness fluctua-
tions, and random dopant variations that affect the memristor
device performance [29]. The process variation will cause the

hardware non-ideal behavior, which usually means the accuracy
degradation [30].

It can be observed that quantization on resistance values
plays an important role in dealing with hardware imperfec-
tions. However, the prior work on mitigating the effect of
hardware imperfections are mainly ad hoc, lacking a system-
atic, algorithm-hardware co-optimization framework to improve
overall resilience. Our proposed framework can mitigate the in-
accuracy caused by the hardware imperfection, while achieves
high hardware efficiency as well.

III. A UNIFIED AND SYSTEMATIC MEMRISTOR-BASED
FRAMEWORK FOR DNNS

The memristor crossbar structure has shown promising fea-
tures in neuromorphic computing systems compared to the
traditional CMOS technologies[22]. However, as DNN goes
deeper and deeper, the massive weight computation and weight
storage introduce severe challenges in neuromorphic comput-
ing system hardware implementations. On the other hand, to
systematically address hardware imperfections of memristor
crossbars, in this paper, we propose a integrated memristor-
based framework

A. Unified and Systematic Memristor-Based Framework using
ADMM

1) Connection to ADMM: ADMM [31] is a powerful opti-
mization tool, by decomposing an original problem into two
subproblems that can be solved separately and iteratively.
Consider the optimization problem min, f(x) + g(x). In
ADMM, the problem is first re-written as

{mln} f(x)+g(z), subject to x =1z ()

Next, by using augmented Lagrangian [31], the above prob-
lem is decomposed into two subproblems on x and z. The first
is mine f(x) + ¢1(x), where ¢ (x) is a quadratic function. As
¢1(x) is convex, the complexity of solving subproblem 1 is the
same as minimizing f(x). Subproblem 2 is min, ¢(z) + ¢2(z),
where g2 (z) is again a quadratic function. The two subproblems
will be solved iteratively until convergence is achieved [32].

2) Unified Memristor-Based Framework: There is a diffi-
culty in using ADMM directly due to the non-convex nature of
the objective function for DNN training, and thereby lacking
of any guarantees on solution feasibility and solution quality.
It becomes even more challenging when incorporating ADMM
into training the memristor-based DNN model, where we need
to consider hardware constraints such as crossbar blocks prun-
ing, conductance range, and mismatch between weight value
and real devices. To overcome this challenge, we proposed
an unified memristor-based framework including memristor-
based ADMM regularized optimization, masked mapping and
retraining steps, which can guarantee the solution feasibility
(satisfying all constraints) and provide high solution quality
(maintaining test accuracy) at the same time.

First, the memristor-based ADMM regularized optimization
starts from a pre-trained DNN model without compression.
Consider an N-layer DNNSs, sets of weights and biases of the i-
th (CONV or FC) layer are denoted by W; and b, respectively.
And the loss function of the N-layer DNN is denoted by
SHUW Y, {b;}X ). Combining the task of memristor-based
structured pruning and weight quantization, the overall problem
is defined by

minimize W, (b)),
minimize ({W3}s, (b)) o
subject to W; e P;, W, €Q;, i =1,...,N.



Given the value of o, the set
P; = {W,|card(supp(W;)) < a;} reflects the constraint
for memristor-based structured weight pruning, where ’card’
refers to cardinality and ’supp’ refers to the support set.
Elements in P, are the solution of W, satisfying the
number of non-zero elements (after structured pruning and
memristor crossbar mapping) in W; is limited by «; for
layer ¢. Similarly, elements in Q; are the solutions of W,
in which elements in W, assume one of ¢; 1,2, " , i M,
(memristor state values), where M, denotes the number of
available quantization level in layer <. Please note that the
qi,; value indicates the j-th quantization level in layer ¢, and
¢ij € [—condmaz, —condmin| U [condmin, condpqe], where
condpin, condq, are the minimum and maximum valid
conductance value of a specified memristor device. More
specifically, we use indicator functions to incorporate the
memristor-based structured pruning and weight quantization
constraints into the objective function, which are

s JO ifW,ePiy, o [0 if W; € Qi
9:/(Wi) = {+oo otherwise, hi(Wi) = {—i—oo otherwise,
for + = 1,...,N. Then the original problem (2) can be

equivalently rewritten as

Immmlze W.}tisq, {bi}
minimize f({W}1.{

N
=1
We incorporate auxiliary variables Y,; and Z;, dual variables
U, and V;, then apply ADMM to decompose problem (3)
into three subproblems. After that, We solve these subproblems
iteratively until the convergence. Assume in iteration k, the first
subproblem is
minimize

Pi k
W, i, {bi}izi) + W; -Y; +U
minimize f({WihLs, {bi}5) S I

i=1

N

Pi gk k2

+Z§=:1 2||W7« Z'L +Vz||F7
4)
The first term in problem (4) is the differentiable (non-
convex) loss function of the DNN, while the other quadratic
terms are convex. As a result, this subproblem can be solved
by stochastic gradient descent (e.g., the ADAM algorithm [33])

similar to training the original DNN.

The solution {W,} of subproblem 1 is denoted by {WF '},
Then we aim to derive {Z"'} and {Y*'} in subproblem 2
and 3. Thanks to the characteristics in combinatorial constraints
(the memristor-based structured pruning and weight quantiza-
tion constraints), the optimal, analytical solution of the two
subproblems are Euclidean projections. We can prove that the
projections are: keeping «; elements with largest magnitudes
and setting remaining weights to zero; and to quantize every
weight element to the closest valid memristor state value.
Finally, we update dual variables U; and V; according to
ADMM rule [31] and thereby complete the k-th iteration in
memristor-based ADMM regularized optimization.

Masked Mapping and Retraining: We first perform the
Euclidean projection (mapplng) on the derived W to guarantee
that at most «; values in each layer are non-zero. Since the
zero weights will not be mapped on the memristor crossbar, we
can mask the zero weights and retrain the DNN with non-zero
weights using training sets. Particularly, this retraining step is
similar to the ADMM regularized hardware optimization step,
but only the memristor weight quantization constraints need to
be satisfied. In this way test accuracy can be partially restored.

B. Memristor-Based Structured Pruning & Quantization

1) Memristor-Based Structured Weight Pruning: In order to
be hardware-friendly, we use structured pruning method [11]
instead of the irregular pruning method [10] to reduce weights
parameters. There are different types of structured sparsity,
filter-wise sparsity, channel-wise sparsity, shape-wise sparsity
as shown in Figure 2. In the proposed framework, We in-
corporate structured pruning in ADMM regularization, where
memristor features are considered. Compared to [23], our
proposed method can better explore the sparsity on weight
matrices, with negligible accuracy degradation, resulting in
better area saving and lower power consumption.
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Fig. 2: Illustration of filter-wise, channel-wise and shape-wise struc-
tured sparsities.

To better illustrate how structured pruning saves the mem-
ristor crossbars, we transform the weight tensors of a CONV
layer to general matrix multiplication (GEMM) format [34]. As
shown in Figure 3 (a) (GEMM view), the structured pruning
corresponds to reducing rows or columns. The three structured
sparsities, along with their combinations, will reduce the weight
dimension in GEMM while maintaining a full matrix. Indices
are not needed and weight quantization will be better supported.

Figure 3 (b) shows a memristor implementation size view
and memristor crossbar area reduction on different types of
sparsities. By applying filter (row) pruning and shape/channel
(column) pruning, as shown in the top of Figure 3(b), either
blocks of memristor crossbar or numbers of memristor cross-
bars can be saved compared to the original design.

The Figure 4 shows how we map the weight parameters
on the memristor crossbars. As shown in the GEMM view in
Figure 3 (a), assuming a CONV layer has n filters, m channels
(including % columns of weights), denoted as W & R"™**,
Generally, the size of a single memristor crossbar is limited
because the reading and writing error will increase by using

GEMM weight reduction
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Fig. 3: Structured weight pruning and reduction of hardware resources
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Fig. 4: Weights Mapping on Memristor crossbars

larger crossbar size [35]. Thus, multiple memristor crossbars
are used to accommodate the large size weight matrix. To
maintain accuracy, the single memristor crossbar size in our
design is no larger than 128 x64 [36] and is identical for all
DNN layers. As shown in Figure 4, each crossbar has i rows
and j columns. We use X and f to represent the inputs and
filters, where ¢ represents the column of weights as shown in
Figure 3 (a). Since there are k weights in a filter, we need to
use the columns at same position from at least k/j different
crossbars to store one filter’s weights. Therefore, j filters can
be fully mapped on those crossbars as one block shown in
Figure 4. There are n filters in total, therefore we need at
least p = n/j blocks to fully map the whole weight matrix
(W € R™**), Within each block, the outputs of each crossbar
will be propagated through an ADC. Then We column-wisely
sum the intermediate results of all crossbars.

2) Memristor-Based Weight Quantization: The weights of
the DNNs are represented by the conductance of memristors on
memristor crossbars and the output of the memristor crossbars
can be obtained by measuring the accumulated current. Due
to the limited conductance range of the memristor devices,
the weight values exceeding conductance range cannot be
represented precisely. On the other hand, within the conduc-
tance range, accuracy loss also exists because of the mismatch
between weight values and real memristor devices.

To mitigate the limitation of conductance range, we in-
corporate the conductance range constraint of the memristor
device (i.e., Q; € [condpin,condq.]) into DNNs training.
To mitigate the accuracy degradation caused by the weight
mismatch, we incorporate the constraint of conductance state
levels (i.e., ¢i1,Gi2, " ,qi,m, € [condmin, condpq,]) into
DNNGs training. Here set Q; = { the value of every element is
one of the values in g1, ¢2, - -+, qa } to represent the constraint,
and q1,q2,- -+ ,qu are all available quantized states. Theoreti-
cally, the conductance of the memristor can be set to any states
within its available range. In reality, the memristor conductance
states are limited by the resolution that the peripheral write
and read circuitry can provide. Generally speaking, more state
levels require more sophisticated peripheral circuitry. In order
to reduce the overheads caused by the peripheral circuitry and
satisfy the robustness of the whole system, the conductance
range will be quantized to several distinctive state levels and
represented by discrete states.
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Fig. 5: Multi-level Memristor Storing 3-bit weight

Figure 5 illustrates an example of an 8-level (3bits) mem-
ristor with linear conductance level (where it may behave as
nonlinear in real designs [37]). The distribution curve shows
a possible range that the memristor state might be actually
set to, when the writing target state is g4. An error will incur
(hardware imprecision) when the actual written state is different
from the target state level. In order to minimize the error caused
by the hardware imprecision, in our constraint of conductance
state levels, we set the quantized values as the mean value
of each state level. To optimize the overall performance, the
number of memristor state levels is also considered in our
proposed framework. By quantizing the weights to fewer bits
while maintain the overall accuracy, we can further improve the
performance since fewer state levels provide longer distance for
single state, resulting in better error resilience and reducing the
hardware imprecision.

Another advantage is the design area and power consumption
can be reduced by quantizing the weights to fewer bits. Accord-
ing to the state-of-the-art design of neuromorphic computing
using memristor, a practical assumption is that the memristor
cell can represent 16 weight levels (4-bit weights) [38]. To
ensure a relatively high accuracy, usually two (or more) mem-
ristors are bundled to represent weights with high resolution
(more bits) [39]. On the other hand, since the memristor device
only has positive conductance value while the weights are
positive or negative, we use different memristor crossbars to
represent the positive weights and negative weights separately.
As an illustration in Figure 6, a 9-bit weight value can be
represented using a 8-bit positive block and a 8-bit negative
block, where each of the 8-bit block is formed by two 4-bit
memristor crossbars. In general, the cost of the ADCs and
other peripheral circuits will grow exponentially for adding
every extra bit precision. Thus, the overhead of the peripheral
circuit can be significantly reduced by quantizing the weights
to fewer bits. The total design area and power consumption can
be reduced as well.

Figure 7 shows the weights distribution of a CONV layer
in ResNetl8 using CIFAR-10 dataset before (b) and after
(a) quantization, after structured weight pruning. For a 5-
bit quantization using our proposed method, the weights are
quantized into 32 different levels within memristor’s valid
conductance range.

IV. EXPERIMENTAL RESULTS

In this section, we evaluate our systematic structured weight
pruning and weight quantization framework on MNIST dataset
using LeNet-5 network structure and CIFAR-10 dataset using
ConvNet (4 CONV layers and 1 FC layer), VGG-16 and
ResNet-18 network structures. All models are designed using
PyTorch API and oriented to match the memristor’s physi-
cal characteristics. Our hardware performance results such as
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Fig. 6: Represent Weights Using Multi-Memristor Crossbars



TABLE I: Structured Weight pruning results on multi-layer network on MNIST, CIFAR-10 datasets (*calculation is based on bolded results)

Structured Weight Pruning Statistics (9-bit)

Quantization & Accuracy

Method Original Accuracy Pruned Accuracy Crossbar Area Saved Compression Ratio 7-bit 6-bit 5-bit
MNIST

Group Scissor [23] 99.15% 99.14% 75.94% 4.16% - - -
our 99.15% 94.34% 17.69 x 98.97% 99.03%  99.03%
LeNet-5 99.17% 99.02% 97.30% 37.06x 98.85%  98.82%  98.77%
98.33% 99.05% 105.52x 98.28%  98.10%  98.23%
*numbers of parameter reduced: 8.65K

CIFAR-10

Group Scissor [23] 82.01% 82.09% 57.45% 2.35x - - -
our 84.55% 57.45% 2.35x 84.18%  83.50%  80.81%
ConvNet 84.41% 84.53% 65.87% 2.93x 83.73% 82.25% 80.41%
83.58% 82.99% 5.88x 83.00% 81.54%  78.18%
our 93.70% 93.76% 89.26% 9.31x 93.67%  93.64%  93.26%
VGG-16 93.36% 96.65 % 29.81x 92.97% 92.51% 91.21%
our 94.14% 93.79% 91.49% 11.75x% 93.68%  93.25%  92.92%
ResNet-18 93.20% 95.21% 20.88x 93.13% 92.65% 92.44%

*numbers of parameter reduced on ConvNet: 102.30K, VGG-16: 13.98M, ResNet-18: 10.46M
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Fig. 7: Distribution of the weights: (a)before quantization, (b) after
5-bit quantization

power consumption, area cost of the memristor device and its
peripheral circuits are simulated by using NVSim [40] and our
MATLAB model. In our memristor model, R,,;,, = 1MS,
Ryaz = 10MSQ, with 4-bit precision, and the peripheral
circuits are using 45nm technology. We use 128 x64 crossbar
size on ResNet-18 and VGG-16, where ConvNet and LeNet-
5 uses 32x32 crossbar size. The experiments are done on an
eight NVIDIA GTX-2080Ti GPUs server.

In this work, multiple 9-bit non-pruned models on different
networks are used as our original DNN models, and results of
structured weight pruning using our original DNN models show
that, on memristor LeNet-5 model, we achieve 17.69x weight
reduction without accuracy loss, 37.06x weight reduction with
negligible accuracy loss and 105.52x weight reduction within
1% accuracy loss. Meanwhile we shrink memristor crossbar
area by more than 94%. On muti-layers CNN for CIFAR-
10, we achieve a higher accuracy compared with [23]. On
deeper neural network structures such as VGG-16 and ResNet-
18, we manage to compress each model unprecedentedly by
29.81x with negligible accuracy loss and 20.88x within 1%
accuracy loss, respectively. We manage to save more crossbar
area compared with [23], and reduce 96.65% of the crossbar
area for VGG-16 and 95.21% for ResNet-18. The experimen-
tal results illustrate great potential for incorporating ADMM
into structured weight pruning and quantization techniques on
memristor-based DNN design, which will tremendously reduce
the area and power consumption.

A. Experimental Results on Structured Weight Pruning

In our experiment, we compare our proposed framework with
Group Scissor [23] as shown in Table I. Please note that we
only prune CONV layers because they perform most of the
FLOPs in the network calculation. On MNIST dataset, our
original CNN model achieves 99.17% accuracy, and 99.15%

accuracy with structured weight pruning. We also reduce our
model size using extreme prune configuration, the results shows
our method gets 98.33% accuracy when we compress our
model by 105.52x.

On CIFAR-10 dataset, we construct different networks to
test our method. Compared with the Group Scissor [23], we
not only achieve higher test accuracy using same compression
ratio (2.35x), but also manage to maintain same accuracy with
a even higher compression ratio (2.93x). For deeper network
structures like VGG-16 and ResNet-18, we introduce such high
regular sparsity into networks without accuracy degradation.
Our framework reduces 13.98M and 10.46M weight volume
for VGG-16 and ResNet-18 respectively.

B. Experimental Results on Weight Quantization for Memristor
Crossbar Mapping

From the discussion in Section III-B.2, we can see that
fewer bits can reduce the power as well as the memristor
crossbar area. However, quantizing weights to some specific
values will cause non-negligible accuracy degradation. In this
paper, to mitigate accuracy degradation, we adopt ADMM to
dynamically optimize well-leveled groups of weights which can
be actually mapped on the memristors. By including memristor
characteristics as discussed in Section III-B.2, our quantization
process does not map weights to zero, and our state levels
are zero-symmetric. Table I shows different configurations for
weight quantization and Figure 8 shows the power and area.
Experimental results demonstrate that our framework maintains
high weight prune ratio and fewer bits with promising test
accuracy. According to 6-bit quantization results in Table I,
there is only 0.1% accuracy degradation after quantizing LeNet-
5 on 17.69x model, and only 0.2% accuracy degradation after
quantizing the 105.52x model. For a larger dataset such as
CIFAR-10, a shallow ConvNet will introduce around 1.0%
accuracy degradation for our designed configuration (2.35x)
and 2.0% accuracy degradation on a 5.88x compressed model,
however as the network structure getting deeper, the accuracy
drops around 0.1% in a 9.31x compressed VGG-16 model and
0.5% in a 11.75x compressed ResNet-18 model, and as the
compression ratio gets larger, accuracy drops 0.8% in a 29.81x
compressed VGG-16 model and 0.6% in a 20.88 x compressed
ResNet-18 model.

As shown in Figure 8, fewer bits represenation results in
less power consumption and smaller area footprint, because
the overhead of peripheral circuits such as ADCs and DACs
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Fig. 8: Total power and area reduction on compressed models using
different quantization bits and networks

will significantly decrease by lower the computing precision.
There is a tremendous power and area reduction using the 5-
bit quantization, since all memristor crossbars for higher bits
representations are no longer needed. Beside the power and
area reduction, fewer bits representation mitigates hardware
imperfection of memristor including state drift and process
variations. Compared to original DNN models, our 5-bit quan-
tization models can achieve the largest power (area) reduction
as 96.95% (97.46%), 98.38% (98.28%), 95.91% (89.74%) and
96.96% (93.97%) on ResNet-18, VGG-16, ConvNet and LeNet-
5, respectively, among different bits representations.

V. CONCLUSION

In this paper, we propose an unified and systematic
memristor-based framework with both structured weight prun-
ing and weight quantization by incorporating ADMM into
DNNs training. Three steps are mainly incorporated in our
framework, which are memristor-based ADMM regularized
optimization, masked mapping and retraining. We evaluate
our proposed framework on different networks, and for each
network, several pruning and quantizaiton scenarios are tested.
On LeNet-5 and ConvNet, we can easily achieve better results
comparing to Gourp Scissor. On VGG-16 and ResNet-18,
after structured weight pruning and quantization, significant
weight compression ratio, power and area reduction 5-bit
weight representation can achieve significant power and area
reduction network where only result in negligible accuracy loss,
compared to the original DNN models.

ACKNOWLEDGMENT

This work is funded by National Science Foundation CCF-
1637559. We thank all anonymous reviewers for their feedback.

REFERENCES

[1] I. Goodfellow, Y. Bengio, and A. Courville, Deep learning. MIT press,
2016.

[2] C. Ding, S. Liao, Y. Wang, Z. Li et al., “Circnn: accelerating and com-
pressing deep neural networks using block-circulant weight matrices,” in
Proceedings of the 50th Annual IEEE/ACM International Symposium on
Microarchitecture.  ACM, 2017, pp. 395-408.

[3]1 Y. Wang, C. Ding, and et al., “Towards ultra-high performance and
energy efficiency of deep learning systems: an algorithm-hardware co-
optimization framework,” AAAI2018, Feb 2018.

[4] C. Ding, A. Ren, and et al., “Structured weight matrices-based hardware
accelerators in deep neural networks,” Proceedings of GLSVLSI 18, 2018.

[5] X. Ma, Y. Zhang, and et al., “An area and energy efficient design of
domain-wall memory-based deep convolutional neural networks using
stochastic computing,” 2018 19th ISQED, Mar 2018.

[6] A. Shrestha, H. Fang, Q. Wu, and Q. Qiu, “Approximating back-
propagation for a biologically plausible local learning rule in spiking
neural networks,” in JCONS, 2019, (in press).

[7] H. Fang, A. Shrestha, De Ma, and Q. Qiu, “Scalable noc-based neuro-
morphic hardware learning and inference,” in 2018 IJCNN, July 2018.

[8] H. Fang, A. Shrestha, Z. Zhao, Y. Wang, and Q. Qiu, “A general
framework to map neural networks onto neuromorphic processor,” in 20th
ISQED, March 2019, pp. 20-25.

[9] H.Li, N. Liu, and et al., “Admm-based weight pruning for real-time deep
learning acceleration on mobile devices,” in Proceedings of GLSVLSI.
ACM, 2019.

[10]
[11]
[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

(23]

[24]

[25]

[26]

[27]

(28]

[29]

(30]

[31]

(32]
[33]
[34]

[35]

[36]

[37]

[38]

[39]

[40]

S. Han, J. Pool, J. Tran, and W. Dally, “Learning both weights and
connections for efficient neural network,” in NeurIPS, 2015.

W. Wen, C. Wu, Y. Wang, Y. Chen, and H. Li, “Learning structured
sparsity in deep neural networks,” in NeurIPS, 2016, pp. 2074-2082.

T. Zhang, K. Zhang, and et al., “Adam-admm: A unified, system-
atic framework of structured weight pruning for dnns,” arXiv preprint
arXiv:1807.11091, 2018.

X. Ma, G. Yuan, and et al., “Resnet can be pruned 60x: Introducing net-
work purification and unused path removal (p-rm) after weight pruning,”
arXiv preprint arXiv:1905.00136, 2019.

S. Ye, X. Feng, and et al., “Progressive dnn compression: A key to
achieve ultra-high weight pruning and quantization rates using admm,”
arXiv preprint arXiv:1903.09769, 2019.

W. Niu, X. Ma, Y. Wang, and B. Ren, “26ms inference time for resnet-50:
Towards real-time execution of all dnns on smartphone,” arXiv preprint
arXiv:1905.00571, 2019.

E. Park, J. Ahn, and S. Yoo, “Weighted-entropy-based quantization for
deep neural networks,” in CVPR, 2017.

J. Wu, C. Leng, Y. Wang, Q. Hu, and J. Cheng, “Quantized convolutional
neural networks for mobile devices,” in CVPR, 2016.

S. Lin, X. Ma, and et al., “Toward extremely low bit and lossless accuracy
in dnns with progressive admm,” arXiv preprint arXiv:1905.00789, 2019.
M. M. Waldrop, “The chips are down for moores law,” Nature News, vol.
530, no. 7589, 2016.

L. Chua, “Memristor-the missing circuit element,” IEEE Transactions on
circuit theory, vol. 18, no. 5, pp. 507-519, 1971.

G. Yuan, C. Ding, and et al., “Memristor crossbar-based ultra-efficient
next-generation baseband processors,” in MWSCAS. IEEE, aug 2017.
A. Ankit, A. Sengupta, and K. Roy, “Trannsformer: Neural network trans-
formation for memristive crossbar based neuromorphic system design,”
in Proceedings of the 36th International Conference on Computer-Aided
Design. 1EEE Press, 2017, pp. 533-540.

Y. Wang, W. Wen, B. Liu, D. Chiarulli, and H. Li, “Group scissor:
Scaling neuromorphic computing design to large neural networks,” in
DAC. IEEE, 2017.

Y. Zhang, N. I. Mou, P. Pai, and M. Tabib-Azar, “Quantized current
conduction in memristors and its physical model,” in SENSORS, 2014
IEEE. IEEE, 2014, pp. 819-822.

C. Song, B. Liu, W. Wen, H. Li, and Y. Chen, “A quantization-aware
regularized learning method in multilevel memristor-based neuromorphic
computing system,” in 2017 NVMSA. 1IEEE, 2017.

A. G. Radwan, M. A. Zidan, and K. N. Salama, “HP Memristor
mathematical model for periodic signals and DC,” in 2010 53rd IEEE
International Midwest Symposium on Circuits and Systems, aug 2010.
M. Hu, H. LI, Q. Wu, and G. S. Rose, “Hardware realization of bsb recall
function using memristor crossbar arrays,” in DAC Design Automation
Conference 2012, 2012, pp. 498-503.

J. J. Yang, M. D. Pickett, X. Li, D. A. Ohlberg, D. R. Stewart, and
R. S. Williams, “Memristive switching mechanism for metal/oxide/metal
nanodevices,” Nature Nanotechnology, 2008.

S. Kaya, A. R. Brown, A. Asenov, D. Magot, e. D. Lintonl, T.”, and
C. Tsamis, “Analysis of statistical fluctuations due to line edge roughness
in sub-0.1pum mosfets,” in Simulation of Semiconductor Processes and
Devices 2001. Springer Vienna, 2001, pp. 78-81.

S. Pi and et al., “Cross point arrays of 8 nm x 8 nm memristive devices
fabricated with nanoimprint lithography,” Journal of Vacuum Science &
Technology B: Microelectronics and Nanometer Structures, 2013.

S. Boyd, N. Parikh, E. Chu, B. Peleato, J. Eckstein et al., “Distributed
optimization and statistical learning via the alternating direction method
of multipliers,” Foundations and Trends® in Machine learning, 2011.
H. Ouyang, N. He, L. Tran, and A. Gray, “Stochastic alternating direction
method of multipliers,” in /CML, 2013, pp. 80-88.

D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
arXiv preprint arXiv:1412.6980, 2014.

S. Chetlur, C. Woolley, P. Vandermersch, J. Cohen, J. Tran, B. Catanzaro,
and E. Shelhamer, “cudnn: Efficient primitives for deep learning,” arXiv
preprint arXiv:1410.0759, 2014.

M. Hu, J. P. Strachan, Zhiyong Li, R. Stanley, and Williams, “Dot-product
engine as computing memory to accelerate machine learning algorithms,”
in 2016 ISQED. IEEE, mar 2016, pp. 374-379.

M. Hu, C. E. Graves, and et al., “Memristor-Based Analog Computation
and Neural Network Classification with a Dot Product Engine,” Advanced
Materials, 2018.

J. Lin, L. Xia, Z. Zhu, H. Sun, Y. Cai, H. Gao, M. Cheng, X. Chen,
Y. Wang, and H. Yang, “Rescuing memristor-based computing with non-
linear resistance levels,” in DATE 2018, 2018.

M. Courbariaux, J. P. David, and Y. Bengio, “Training deep neural
networks with low precision multiplications,” in /CLR, 2015.

P. Chi, S. Li, C. Xu, T. Zhang, and et al., “Prime: A novel processing-in-
memory architecture for neural network computation in reram-based main
memory,” in 2016 ACM/IEEE 43rd Annual International Symposium on
Computer Architecture, 2016.

X. Dong, C. Xu, and et al., “Nvsim: A circuit-level performance, energy,
and area model for emerging nonvolatile memory,” IEEE TRANSAC-
TIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS
AND SYSTEMS, vol. 31, no. 7, 2012.



