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Abstract—We address the problem of estimating core numbers
of nodes by reading edges of a large graph stored in external
memory. The core number of a node is the highest k-core in which
the node participates. Core numbers are useful in many graph
mining tasks, especially ones that involve finding communities of
nodes, influential spreaders and dense subgraphs. Large graphs
often do not fit on the memory of a single machine. Existing
external memory solutions do not give bounds on the required
space. In practice, existing solutions also do not scale with the
size of the graph. We propose NimbleCore, an iterative external-
memory algorithm, which estimates core numbers of nodes using
O(n log dmax) space, where n is the number of nodes and dmax

is the maximum node-degree in the graph. We also show that
NimbleCore requires O(n) space for graphs with power-law
degree distributions. Experiments on forty-eight large graphs
from various domains demonstrate that NimbleCore gives space
savings up to 60X, while accurately estimating core numbers with
average relative error less than 2.3%.

I. INTRODUCTION

Graphs are used to represent social connections, inter-
actions, co-occurrences, and relationships between entities.
Understanding the structure of graphs is key to building
robust and efficient mining algorithms. Questions such as ‘how
central is a node?’, ‘what is the most densely connected
set of nodes?’, or ‘which nodes lie on the periphery of the
graph?’, are relevant in various graph-mining applications.
Central to such applications is the concept of a k-core [17],
which is defined to be the maximal subgraph such that all
the nodes in the subgraph have degree at least k in the
subgraph. Every node may be part of several k-cores, each
corresponding to a different value of k. The core number of
a node is the highest value k such that the node is a part
of a k-core. Core numbers of nodes have wide applications
in problems such as community detection, selecting nodes for
network experiments, and modeling the spread of information.
For example, in community detection it is helpful to know
the set of nodes that are part of a k-core containing high
degree nodes [14]. Another example is the use of k-core
decomposition and core numbers to understand the structure
of protein interaction networks [20].

Problem definition: Given a graph G = (V,E), compute
the core number Cu of each node u in V . Core numbers can
be calculated by running an in-memory k-core decomposition
algorithm [1], which takes O(max(n,m)) time and O(m)
space, where n and m are the number of nodes and edges in

Fig. 1: NimbleCore gives significant savings (8.04X average
± 7.5) while accurately estimating core numbers (0.011
average error ± 0.018).

the graph respectively. Other existing algorithms perform k-
core decomposition in a distributed setting [12], or estimate a
node’s core number from its local subgraph [13], or partition
the graph and load the required partitions to compute k-
cores [2]. Building the local subgraph [13] or finding the
appropriate partition [2] can take large amounts of time and
space, with significant numbers of I/O calls. In the worst
case, these algorithms can require O(m) space in memory.
Similarly, the distributed algorithm by Montresor et al. [12]
could require O(m) space and up to n iterations over the
data. As graph datasets become larger and larger, the need for
algorithms that require much less than O(m) space increases.
The main challenge for estimating core numbers in large
graphs is that the graph cannot be stored in main memory.

The major contributions of our work are as follows:

1) Novel algorithm: We present NimbleCore, a space-
efficient external memory algorithm that accurately core
numbers in a large graph without storing the graph.

2) Theoretical analysis: NimbleCore requires only
O(n) space for graphs with power-law degree distribu-
tions and O(n log dmax) space for general graphs, where
n is the number of nodes in the graph and dmax is the
maximum node degree.
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3) Real-world experiments: Experiments on large real-
world large graphs from various domains show that
NimbleCore’s achieves space savings on average of
8.04X (± 7.5) while returning core number estimates with
average relative error of 0.011 (± 0.018).

The code for NimbleCore is available at http://eden.
rutgers.edu/∼priyagn/code.html

The remainder of this paper is organized as follows. Sec-
tion II gives the background and notations used in the paper. In
Section III, we present our proposed algorithm NimbleCore
and its theoretical analysis. Section IV discusses experiments,
which show the efficiency and effectiveness of NimbleCore.
Section V reports on the related work. Section VI concludes
the paper.

II. BACKGROUND

Table I lists the notation used in this paper. We are given a
graph G = (V,E). A node u ∈ V has degree du; its neighbor-
ing nodes are in Γu (i.e., Γu = {v ∈ V s.t. (u, v) ∈ E}). The
core number of node u is denoted by Cu and is the maximum
value k of k-core in which u participates.

Given the core numbers of a node’s neighbors, its core
number can be exactly calculated as follows:

Lemma 1. Let Su contain the core numbers of neighbors of
node u, sorted in descending order.

Cu = max
1≤i≤du

(min(Su[i], i))

Proof: See [12] [13] for the proof.
From the above lemma, we can state that the core number

Cu of a node u is the largest value k such that there are at
least k neighbors with degree at least k. Note that the above
computation of Cu is equivalent to the definition of h-index [6]
used to measure the productivity and citation impact of a
scholar. The h-index of a scholar with N papers, is defined
as the highest value h such that the scholar has at least h
papers with h or more citations. We can formally generalize
the definition of h-index on a list of values as follows:

Definition 1. The h-index of a list of positive integers L sorted
in descending order is defined as

h(L) = max
1≤i≤length(L)

(min(L[i]), i))

where Li ∈ Z>0.

Given Lemma 1 and Definition 1, we can state that node u’s
core number is equal to the h-index of the core numbers of u’s
neighbors (see Figure 2a for a toy example). We will refer to
the computation in Lemma 1 as h-index. The following lemma
shows that for a node u, the h-index of the upper bounds on
the core numbers of u’s neighbors is an upper bound on the
core number of u.

Lemma 2. Let ψ be a function such that ψ(x) ≥ Cx, for
x ∈ V . Let Γu = {v1, v2...vdu} be the neighbors of node
u ∈ V . Let Ψ be the list of ψ(v)∀v ∈ Γu in descending order.

Cu ≤ max
1≤i≤du

(min (Ψ(vi), i)) .

Notation Description
V set of nodes
E set of edges
n number of nodes
m number of edges
du degree of node u

dmax maximum degree in the graph
Cu core number of node u

Ĉu upper-bound on the core number of node u

C̄u lower-bound on the core number of node u

Ci
u estimate of node u’s core number in ith iteration

Γu list containing neighbors of node u

Su sorted list (in descending order) containing
core numbers of neighbors of node u

kmax maximum core number (a.k.a. degeneracy) in G

h(L) h-index of list L
L[i] the ith element of the list L

TABLE I: Notations used in the paper.

Proof: See [2].
Because a node in a k-core must have degree at least k, the

degree of a node is a naive upper-bound for the node’s core
number (i.e., for a node u, Cu ≤ du). For graphs that can be
stored on a single machine, Montresor et al. [12] show that
we can use Lemmas 1 and 2, begin with degree as a naive
upper-bound estimate for a node and iterate over the set of
edges to compute the upper-bound estimate of each node’s
core number. They show that these values will converge to
the true core number of each node. However, for graphs that
cannot be stored in memory, this is not feasible.

III. PROPOSED APPROACH: NimbleCore

This section is organized as follows. We first provide an
overview of NimbleCore. Next, we describe its binning
strategy, followed by its stopping condition. We then present
the entire algorithm, and wrap-up the section by discussing a
theoretical analysis and extensions of NimbleCore.

A. Overview of NimbleCore

We present an iterative external-memory algorithm,
NimbleCore, that estimates each node’s core number by bin-
ning its neighbors’ core-number estimates and then estimating
the h-index using these binned values. In other words, rather
than storing a complete vector of core-number estimates for
each node’s neighbors, we divide these neighbor estimates into
separate core-number bins. This allows for a large reduction
in space requirements.
NimbleCore iterates over the graph’s edges. In the first

iteration, it computes the degree of each node. In subsequent
iterations, while the stopping condition is not satisfied (see
Section III-C), NimbleCore uses binning to keep approximate
counts of the core numbers of neighbors of each node. At the
end of each iterations, NimbleCore updates the core number
estimates of all the nodes.

The two main aspects of NimbleCore are (1) the binning
strategy and (2) the stopping condition. Bins are vectors

2

http://eden.rutgers.edu/~priyagn/code.html
http://eden.rutgers.edu/~priyagn/code.html


2016 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining (ASONAM)

that are maintained to count the frequency of items. For
example, while creating a histogram, one would be required
to count items that fall in each range of values. Similarly,
NimbleCore uses bins to approximately count the frequency
of core numbers of neighbors of a node. The binning strategy
plays an important role because the number of bins determines
the space requirement of NimbleCore and the assignment
of bin sizes affects the error on the estimated core numbers.
Lastly, a good stopping condition results in fewer number
iterations, thus saving runtime.

B. Binning Strategy

In this section, we describe NimbleCore’s binning strat-
egy, which requires O(n log dmax) space. The error resulting
from the binning strategy of NimbleCore is discussed in
Section III-E.

Lets first consider a naive binning algorithm, as shown in
Figure 2a, where a bin is maintained for each distinct value of
a neighbor’s core number estimate, for each node. This naive
binning strategy essentially build a histogram and thus requires
O(ndmax) space, which is equivalent to O(m); and hence not
feasible for large graphs. One could use fewer counters (or
bins) to build an approximate histogram. But, how many bins
do we choose, and of what sizes, to get the best estimates of
core numbers?

Given the core numbers of a node’s neighbors,
NimbleCore’s binning, called reverse log-binning, selects
larger bins for smaller values and smaller bins for larger
values. In this way, NimbleCore allows for more granularity
in the core-number estimates of u’s neighbors that are closer
to the estimated upper-bound core number Ĉu.

Reverse log-binning sets the number and sizes of bins (for
the computation of approximate h-index) as follows:
• Let g be an upper bound on the estimate of node u’s core

number. g is initially set to the degree of u.
• Let B be the number of bins: B = log(g) + 1.
• Set BinCount and BinV alue of length B such that
∀0 ≤ i < B, BinV alue (i) = g − 2log(g)−i + 1.

• A value Su[j] is counted in BinCount (i) if
BinV alue (i− 1) < Su[j] ≤ BinV alue (i).

Figure 2b demonstrates how NimbleCore’s reverse log-
binning would estimate Ĉu using BinCount and BinV alue .
As shown in the figure, there are two kinds of approximations
done depending on whether the values are higher or lower than
the current estimate. In Figure 2b, the current estimate, Ĉu, is
the degree, which is 8. Values higher than Ĉu are approximated
to the last bin (i.e., the current upper-bound estimate). For
example, 12 being higher than 8, is approximated to 8 and
counted in the last bin corresponding to 8. Values that are at
most the current estimate Ĉu, are assigned to an appropriate
bin as described above. For example, 6 is assigned to third bin
and its value is approximated to 7.

Next, we show that the above approximation of core
numbers of a node’s neighbors and the subsequent h-index
computation result in an upper-bound estimate of the node’s
core number. For values in Su that are greater than the given

(a) Let the core numbers of the 8 neighbors of node u be [12, 9, 8, 7,
7, 7, 6, 1]. A node’s core number is the h-index of the core numbers
of its neighbors. The h-index is the value at which the descending
order of a set of values intersect with the ‘X=Y’ line. A node’s exact
core number can be computed by storing the exact core numbers of
its neighbors in arrays BinV alue = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11,
12] and BinCount = [1, 0, 0, 0, 0, 1, 3, 1, 1, 0, 0, 1]. This requires
O(du) space per node.

(b) Proposed idea: Reverse Log-binnng. A node’s approximate core
number can be computed by storing approximate values and counts
of its neighbors’s core numbers in arrays, BinV alue = [1, 5, 7, 8]
and BinCount = [1, 0, 4, 3]. This requires O(log(du)) space per
node.

Fig. 2: Example: Calculating node u’s core number using the
core numbers of u’s neighbors

upper bound of the h-index, we count them in the last bin
(i.e., in BinCount(B)). Lemma 3 shows that this procedure
does not change the h-index result.

Lemma 3. Let L be an ordered list (in descending order). Let
j be the highest index such that L[j] > h(L), where h(L) is
the h-index of the list L (see Definition 1). Furthermore, let
L′ be an ordered list (in descending order) such that ∀i : 0 ≤
i < length(L), L′[i] is set to h(L) if i ≤ j; otherwise, L′[i]
is set to L[i]. Then, h(L′) = h(L).

Proof: If @j such that L[j] > h(L), then L′ and L are
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equivalent. Hence h(L′) = h(L). On the other hand, if ∃j such
that L[j] > h(L), then the maximum value in L′ is h(L). So,
h(L′) ≤ h(L). The values at indices i ≤ j are replaced with
h(L) because j is the highest index (i.e., L[j] > h(L)). Thus,
there are at least h(L) values in L′ that are at least h(L); i.e.
h(L′) ≥ h(L). Hence h(L′) = h(L).

For values in Su that are less than the given upper bound
of the h-index, reverse log-binning assigns them to one of the
bins and approximates their values to the upper bound of the
range of values held by the bin. Hence for values in Su that are
less than the current estimate, their approximation is always
an upper bound of their exact value. By Lemma 2, we know
that the upper bounds on the core numbers of u’s neighbors
give the upper bound of u’s core number.

Having small bin sizes for values that are close to but not
larger than the current upper-bound estimate gives lower error
in the h-index computation.1 For example, for a node with
degree five to have a core number of five, five of its neighbors
must have core numbers equal to or greater than five. Thus,
having smaller bins close to and not greater than five, would
result in lower error in the h-index for our example node.

C. Stopping Condition

In every iteration, NimbleCore calculates better estimates
for the core numbers of nodes than that in the previous
iteration. Although more iterations give better estimates and
lower error, this increases the runtime of NimbleCore. In this
section, we discuss how NimbleCore decides to stop iterating
over the list of edges, making a good trade-off between number
of iterations and error.

Our stopping condition is based on estimating the average
relative error at every iteration and stopping when the esti-
mated error drops below a threshold. The relative error (also
referred to as ‘error’ in the paper) of these estimates can be
calculated as follows,

Relative Error =
Ĉu − Cu
Cu

(1)

where Cu is u’s exact core number and Ĉu is the upper-bound
estimate for u’s exact core number. Since Cu is not known,
we estimate the lower bound C̄u and thus estimate the error.

Estimated Relative Error =
Ĉu − C̄u
C̄u

(2)

Since C̄u ≤ Cu, Estimated Relative Error ≥ Relative Error.
We compute the lower bound as follows: Step 1: Sample a set
of wedges for each node. Step 2: Count the number of closed
wedges i.e. triangles. Step 3: Given the number of triangles
of node u, using Turan’s theorem,2 compute the size of the
lower bound of the size of largest clique, r, that the node u
participates in. If a node participates in a clique of size r, it is

1Recall that values larger than the current estimate are all placed in the last
bin.

2Turan’s theorem [18] about a graph without a clique of size r + 1 is as
follows: Let G be any graph with n vertices and m edges, such that G does
not have a clique of size r + 1. Then m ≤

(
r−1
r

.n
2

2

)

a part of the r-core and hence the lower bound of core number
of u is r.

Similar to tightening the upper bound, we can tighten
the lower bound estimate for a node’s core number in each
iteration. Better lower bounds give a better estimate of the
error. In every iteration, for all u ∈ V , the lower-bound C̄u and
the upper-bound Ĉu of u’s core number are updated. C̄u helps
estimate the error, as described above. Since the upper bound
monotonically decreases and the lower bound monotonically
increases, the estimated error also monotonically decreases. As
the number of the iterations increases, the estimates of core
numbers converge (i.e., stop changing). The goal of the stop-
ping condition is to terminate NimbleCore when the change
in the estimates falls below a negligible value. Specifically,
when the difference in the estimated error, averaged over all
nodes, between consecutive iterations falls below a threshold,
NimbleCore terminates.3

D. The Complete Algorithm

In the first iteration, the degree of each node u is calculated
by incrementing a counter for u when an edge containing u
is read. The second and the third iterations are used to count
triangles, which are used in calculating a lower-bound estimate
on core numbers. Specifically, in the second iteration, the
neighbors of a node are sampled with probability p. A wedge is
comprised of a pair of sampled neighbors. In the third iteration,
each edge is checked to see if it closes any of the sampled
wedges. A closed wedge is a triangle. From the triangles
observed in the third iteration, NimbleCore estimates the
lower bound on each node’s core number and calculates an
estimated error (described in Section III-C). The subsequent
iterations estimate and update the upper and lower-bounds of
core numbers of the nodes. The method terminates when the
drop in the estimated error falls below a threshold. The upper-
bound estimates from the last iteration are then returned as the
final estimates.

E. Performance Analysis of NimbleCore

The main challenge that NimbleCore is trying to address
is that of space. By cleverly choosing bin sizes, NimbleCore
is able to achieve a dramatic reduction in required space, as
compared to existing methods. In this section, we provide
bounds on NimbleCore’s space and time requirements.

1) Space: NimbleCore requires O(n log dmax) space,
which is less than the O(m) space required for a k-core
decomposition. Many real graphs have power-law degree dis-
tributions [3]. For these graphs, NimbleCore requires only
O(n) space.

Theorem 1. NimbleCore requires O(n log dmax) space.

Proof: NimbleCore requires log du bins per node, where
du is the degree of node u in the graph. So, it requires
O(log dmax) space per node, where dmax is the maximum
degree. Given n nodes in the graph, the total space required
is then O(n log dmax).

3The experiments in Section IV use a threshold of 0.01.
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Theorem 2. NimbleCore requires O(n) space for any graph
with power-law degree distribution.

Proof: Suppose a graph G = (V,E) has n = |V | nodes,
such that the degrees of the nodes, arranged in decreasing
order, follow a Zipf distribution. The ith node with degree di is
given as di = iR/nR for all i = 1, . . . , n, where R < 0. Space
required by NimbleCore per node is logε di = log(iR/nR),
where ε > 1. The base of the log is 2 (i.e., ε = 2). Total space
used by the algorithm for computation of core numbers (in
each iteration) is then:

n∑
i=1

log(di) =

n∑
i=1

log(iR/nR)

Approximating the summation with integral we get,∫ n

x=1

log(xR/nR)dx = −nR+R+R log n

Since R < 0, ∀n > 1, R log n < 0. Thus, the total space
required by NimbleCore is less than −nR, i.e. O(n).

2) Runtime: The runtime required by NimbleCore de-
pends on the number of iterations. Each iteration takes O(m+
n log dmax) time.

Theorem 3. NimbleCore requires O(m+ n log dmax) time
per iteration.

Proof: Each iteration requires O(m) time to read the
edges. After an iteration, NimbleCore takes O(log dmax)
time per node to estimate its core number. Hence, the time
taken per iteration by NimbleCore is O(m+n log dmax).

The number of iterations depends on the stopping condition
(described in Section III-B), which in turn depends on the
estimates of the lower bounds on core numbers. Thus, the
number of iterations, and hence the runtime for NimbleCore,
depends on the quality of the lower-bound estimates.

F. Extensions

NimbleCore easily extends to directed graphs, by consider-
ing either the in-degree or out-degree to find the corresponding
k-cores. NimbleCore can also be extended to weighted
graphs G(V,E,W ), where W (u, v) is the weight on edge
(u, v) as described by Giatsidis et.al [4], by replacing the h-
index function in Lemma 1 with

Cu = max( min
1≤i≤du

(Su[i],

i∑
j=1

W (u,Λu[j])))

where Λu is the list of neighbors corresponding to the sorted
list of core numbers of neighbors Su.

IV. EXPERIMENTS

This section is organized as follows: datasets, baseline and
competing approaches, and results. All experiments were run
on a CentOS machine with 2.4 GHz (x 80) and 1024 GB
memory, running Linux 2.6 and using Python 2.7.

Graph # Nodes # Edges kmax Graph type
Web-NotreDame 326K 1.1M 155 Unipartite

Web-Stanford 282K 2.M 71 Unipartite
Flickr 106K 2.3M 573 Unipartite

Amazon 403K 2.4M 10 Projected Bipartite
YouTube 1M 3.M 51 Unipartite

Web-Google 876K 4.3M 44 Unipartite
Wiki-Talk 2M 4.7M 131 Unipartite

Web-BerkStan 685K 6.6M 201 Unipartite
Cit-Patents 4M 16.5M 64 Unipartite
LiveJournal 4M 34.7M 360 Unipartite

Orkut 3M 117.2M 253 Unipartite

TABLE II: Graphs used in our experiments. The graph’s
degeneracy is denoted by kmax.

A. Datasets

Tables II lists the graphs from the Stanford Large Network
Dataset Collection [10], used in our experiments. We consider
a variety of graph types: social networks (Flickr, LiveJour-
nal, Orkut, and YouTube), Web graphs (Web-BerkStan, Web-
Google, Web-NotreDame and Web-Stanford), citation graph
(Cit-Patent), co-purchasing graphs (Amazon), and communi-
cation networks (Wiki-Talk).

B. Baseline and Competing Methods

Figure 3 provides a summary of NimbleCore and the
baseline and competing methods. Specifically, we compare
NimbleCore against the following four methods.

(1) k-core decomposition: Batagelj and Zaversnik [1]
propose an in-memory algorithm to find the k-cores of a graph,
and thus the core numbers of nodes. To find a k-core, their
method recursively deletes all nodes with degree less than k,
until there are no nodes of degree k left. This method requires
O(m) space and O(max(n,m)) runtime.

(2) Shaving Method: k-core decomposition as described
above can be implemented in an out-of-memory fashion by
maintaining the current degree of each node in a vector of
length n and by reading edges from the disk. To find a k-
core, Shaving deletes nodes that have degree less than k and
re-computes the degree of the remaining nodes, requiring two
iterations on the edge list. As this step is performed repeatedly,
a node that is removed when finding a k-core will have a core
number equal to k−1. This exact method requires O(n) space
and could require up to O(m× kmax) iterations, resulting in
a worst case time complexity of O(m2 × kmax).

(3) EMcore: Cheng et al. [2] propose an out-of-memory
exact k-core decomposition method that partitions the graph
into blocks and loads the required blocks of the graph into
memory for the k-core decomposition. Unfortunately the space
guarantees given in their paper was shown to be incorrect by
Goodrich and Pszona [5] and by Khaouid et al. [7]. In worst
case, EMcore could require O(m) space.

(4) Egonet-based core number estimation: O’Brien and
Sullivan [13] propose an approximate method to estimate a
node’s core number by using the induced subgraph up to h
hops away from the node. Specifically, for each such subgraph,
they run k-core decomposition to estimate the node’s the core
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Fig. 3: Comparison of other methods to NimbleCore. Unlike NimbleCore, several of the existing methods (listed in the
right-hand side table) do not guarantee space less than O(m). Shaving is the only method that provides a guaranteed space of
less than O(m), but it requires many more iterations than NimbleCore and has slower runtime than NimbleCore. * Note that
the lower space guarantee in EMcore [2] was shown to be incorrect by Khaouid et al. [7] and by Goodrich and Pszona [5].

Fig. 4: NimbleCore uses 2× lesser space than EM-
core [2]. The space required by NimbleCore for a given
graph is O(n log dmax), while the space requirement for
EMcore depends on the k-core being identified.

number. When the number of hops is set to the diameter of the
graph, the core number of a node is exactly calculated. The
performance of their algorithm in terms of space, runtime, and
error depends on the number of hops considered for each node.
In our comparisons, we use the 1-hop induced subgraph (i.e.,
the egonet) of a node.

C. Results

This section contains two parts. In part 1, we demonstrate
the performance of NimbleCore in terms of space, error,
runtime, and stopping condition. In part 2, we discuss ob-
servations about NimbleCore in terms of the drop in error
on core-number estimates and error on core-number estimates
of high-degree nodes.

1) Performance of NimbleCore:
Q1: Space: How much space does NimbleCore save?

Figure 1 shows that on average, NimbleCore saves 8.04X (±
7.5) of the space as compared to the k-core decomposition [1]
on the graphs in TableII. These observations support the

Fig. 5: NimbleCore’s error is less than the 1-hop Egonet-
based method [13]. Each point on the plot represents a graph.
The average ratio of error on NimbleCore to error on the
Egonet-based method is 0.051 (± 0.097). (A tie would have
an average ratio of error = 1).

theoretical results that real graphs, with power-law degree
distributions, the NimbleCore’s space complexity is O(n)
and for general graphs is O(n log(dmax)) while the space
requirement for k-core decomposition is O(m) For example,
for Orkut graph with 3 million nodes and 117.2 million edges,
NimbleCore requires only 2.1 GB space, where as the k-core
decomposition requires 59 GB space.

EMcore [2] is an out-of-memory exact k-core decomposi-
tion method, based on graph-partitioning that requires O(m)
space in worst case. Figure 4 shows that the space required by
EMcore is at least 2× higher than NimbleCore (on average
8× higher, with ± 7.49). In contrast to EMcore, NimbleCore
guarantees the space requirement to be O(n log dmax), which
is smaller than O(m).

Q2: Error: How accurate are NimbleCore’s estimated
core numbers?

The average relative error of core number estimates of the
graphs in Table II is 0.011 (±0.018). To demonstrate the
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Fig. 6: NimbleCoregives upto 60.5X space savings for
error less than 2.3% Each point corresponds to one of the
48 large graphs from KONECT [9]. (0.002 average error ±
0.005 and 14.6X average space saving ± 10.8X).

Fig. 7: NimbleCore requires fewer iterations than Shav-
ing. Each point on the line in the plot corresponds to the
number of iterations required by NimbleCore and the number
of iterations required by Shaving to obtain the same relative
error. NimbleCore has 2.8× faster runtime than Shaving.

quality of the estimates returned by NimbleCore, we ran
experiments on additional 48 graphs4 from KONECT [9]5

with more than a million nodes and for which the competition
(namely, the in-memory k-core decomposition) took up to 36
hours to terminate (in contrast NimbleCore took less than 2.5
hours to terminate, for all 48 graphs). Figure 6 shows that up to
60X space savings (14.6X average ±10.8) with relative error
less than 2.3% (0.002 average error ± 0.005) was achieved.
The three points to the right represent road networks (with
maximum degree of 12), which are similar to planar graphs.

O’Brien and Sullivan’s egonet-based method [13] extracts

4List of the additional 48 graphs: http://eden.rutgers.edu/∼priyagn/code.
html

5http://konect.uni-koblenz.de/networks/

Fig. 8: NimbleCore’s stopping condition produces sig-
nificant speed-up. The stopping condition described in III-C
helps terminate NimbleCore in fewer iterations. The average
speed-up is 11.5× (± 10.7). The average difference (i.e.
sacrifice) in error is 0.012 (± 0.019).

a h-hop egonet for every node and computes its core number
based on the egonet. The value for h has to be set by the user.
Constructing egonets for every node can be time-consuming
depending on the value of h. Figure 5 compares the relative
error of the 1-hop Egonet-based method with NimbleCore
on graphs in Table II. We observe that the average error of
the Egonet-based method is 0.29 (with ± of 0.18), while that
of NimbleCore’s is 0.011 (with ± of 0.018).

Q3: Runtime: How much faster is NimbleCore than
the Shaving method? The Shaving method is an out-of-
memory baseline that uses O(n) space and iterates over the
edges by reading them off the disk. Since NimbleCore also
requires O(n) space for graphs with power-law degree distri-
butions and iterates over the edges from the disk, we compare
the number of iterations required by the two methods. Figure 7
shows the number of iterations required by NimbleCore and
the Shaving method to achieve the same error, on graphs in
TableII. It shows that the Shaving method requires at least 40X
more iterations over the edges than NimbleCore, to achieve
the same error. In terms of wall-clock runtime, NimbleCore
was found to be at least 2.8× faster than the Shaving method.

Q4: Stopping Condition: How effective is
NimbleCore’s stopping condition? The stopping
condition helps NimbleCore terminate in a small number
of iterations, making a trade-off between error and runtime.
Recall that the stopping condition depends on the estimated
error. Figure 8 presents the number of iterations vs. relative
error under two scenarios: (1) using NimbleCore’s stopping
condition (See Section III-C), and (2) using no stopping
condition (i.e. terminating NimbleCore when there is no
change in the core number of all nodes between consequent
iterations). NimbleCore’s stopping condition provides an
average speedup of 11.5× (±10.7) with an average difference
in error of 0.012 (± 0.019). Note that the error for ‘Web-
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NotreDame’ graph is higher than 0 because NimbleCore
without a stopping condition is still an approximate algorithm.

2) Observations about NimbleCore:
Observation 1: Error drops quickly over a small number

of iterations. The first, fifth, tenth and twentieth iterations,
respectively, give an error of 0.49 (± 0.19), 0.04 (± 0.03),
0.017 (±0.021) and 0.01 (± 0.017), on graphs in TableII. This
demonstrates that even without a stopping condition, in real
graphs, low error can be obtained by running NimbleCore
for as low as 5 iterations.

Observation 2: The error of high degree nodes is low.
In many applications [19] [14], it is useful to know the core
number of high degree nodes. We found that the average error
of NimbleCore on the top 1% of the high-degree nodes in
the graphs in TableII, is 0.012 (± 0.008), as compared to an
average of 0.011 (± 0.018) for the whole graph.

V. RELATED WORK

Core numbers and k-cores of a graph, introduced by Sei-
dman [17], have been shown to have many applications in
problems such as community detection [4], finding dense
subgraphs [15], designing network experiments [19], modeling
spread in networks [8], predicting protein function [20] and
graph coloring problems [11].

Batagelj and Zaversnik [1] proposed a k-core decomposition
algorithm that requires O(max(n,m)) runtime and O(m)
space to perform k-core decomposition. Cheng et al. [2]
presented a method to partition the graph and compute core
number in a distributed fashion. O’Brien and Sullivan [13]
introduced a recursive algorithm that computes core numbers
for each node based on a h hop subgraph around the node.
We compare NimbleCore against these three methods. See
Figure 3 for a summary comparison and Section IV-C for
empirical comparisons.

Montresor et al. [12] proposed a distributed k-core decom-
position algorithm, which is similar to NimbleCore. In [16],
Sarı́yüce et al. propose algorithms for updating a k-core
decomposition of a graph, as edge insertions and deletions are
given as a stream, by storing certain subgraphs in memory.
NimbleCore does not store any subgraph or list of neighbors
of any node. In recent work by Khaouid et al. [7], they
implement the algorithms in [1], in [2] and in a distributed
setting. Goodrich and Pszona [5] present a method that returns
an approximate degeneracy-ordering of nodes. Given the core
numbers of nodes, a degeneracy-ordering is simply an ordering
of nodes by their core number, but the core number of nodes
cannot be obtained from a degeneracy-ordering.

VI. CONCLUSION

We presented NimbleCore, a novel space-efficient
external-memory algorithm, which estimates core numbers of
nodes in graphs too large to be stored in main memory. Some
of NimbleCore’s properties are as follows:

1) Novel algorithm: NimbleCore iterates over the edges
and computes accurate estimates of core numbers in a
large graph without storing the graph in memory.

2) Theoretical analysis: NimbleCore requires O(n)
space for graphs with power-law degree distributions and
O(n log dmax) for general graphs.

3) Real-world experiments: In real graphs,
NimbleCore gave significant space savings (average
8.04X ±7.5 ) and consistently low error (0.011 average
error ± 0.018).

The code for NimbleCore is available at http://eden.
rutgers.edu/∼priyagn/code.html
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