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Abstract. Node classification algorithms are widely used for the task
of node label prediction in partially labeled graph data. In many prob-
lems, a user may wish to associate a confidence level with a prediction
such that the error in the prediction is guaranteed. We propose adopt-
ing the Conformal Prediction framework [17] to obtain guaranteed error
bounds in node classification problem. We show how this framework can
be applied to 1) obtain predictions with guaranteed error bounds, and
2) improve the accuracy of the prediction algorithms. Our experimental
results show that the Conformal Prediction framework can provide up
to a 30% improvement in node classification algorithm accuracy while
maintaining guaranteed error bounds on predictions.

Keywords: Node classification · Conformal prediction · Bounded error
rates.

1 Introduction

In real world network analysis problems, it is common for data to be incomplete.
In such cases, node classification algorithms play an important role: given a par-
tially labeled graph, these algorithms predict labels for unlabeled nodes by us-
ing known node’s labels and connections between nodes. For example, consider a
criminal group hidden inside a general social network. If some criminals and non-
criminals are identified, can an algorithm predict whether the unlabeled nodes
are criminals? By taking advantage of connections, algorithms specifically de-
signed for node classification generally perform better on semi-supervised graph
classification tasks as compared to traditional classification algorithms [11,19].

The user of a node classification algorithm often may wish to associate a
confidence with each prediction. For example, when predicting whether a node
in a social network is a criminal or not, a prediction may lead to a criminal inves-
tigation. In such applications, it is thus essential to have prediction algorithms
that can provide guaranteed error rates on unseen data.

The performance of a classification algorithm is generally measured with met-
rics such as accuracy, precision, and recall. Such metrics describe the algorithm
performance in aggregate, but do not measure certainty of individual predictions.

? This material is based upon work supported by the U.S. Army Research Office under
grant number W911NF1810047.
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(b) Conformal Prediction

Fig. 1: Comparison of using Conformal Prediction framework vs class probability as
upper error bound for Cora citation dataset classification using Iterative Classification
Algorithm. Conformal prediction actual error is always no greater than the error bound
where as the actual error for class probability does not follow the error bound.

Node classification algorithms can generally output a vector indicating the
probability that a node belongs to each class. One can consider the probability
of a node belonging to some class as the confidence of the label (1-probability
would be the upper error bound). Figure 1a shows that actual errors are larger
than the upper error bounds when using the label probability as error bound.
Therefore, label probability should not be interpreted as confidence values

In this work, we demonstrate how the Conformal Prediction framework can
be used to obtain error bounds for the node classification task. Conformal Pre-
diction (CP) is a framework to provide guaranteed error bounds for prediction al-
gorithms [16]. This framework works on top of a prediction algorithm (e.g. SVM,
Neural Network) and for a specified error bound, considers how unusual a data
instance is in consideration to training data. Since CP framework is a very math-
ematical framework, application to prediction algorithms require customizing
the framework according to the algorithm. The CP framework has been applied
to provide guaranteed error bounds for machine learning algorithms [4, 7, 12].
However, to our knowledge, CP has not been applied to the network setting.
Figure 1b shows an example application of the CP framework to node classifica-
tion problem. The prediction error rate is always lower then the expected error
the CP framework suggests.

Our contributions in this paper are: 1) We show conditions under which
node classification problem would satisfy the CP framework assumptions to ob-
tain valid error bounds, 2) We show how to apply the CP framework to node
classification algorithms from different categories 3) We conduct an experimen-
tal analysis over various types of node attributes and graphs and show that the
CP framework can improve node classification algorithm accuracy.

2 Background

2.1 Node Classification Algorithms

Node classification algorithms consider both node attributes and node connec-
tivity patterns when making predictions. There are three main categories of
node classification algorithms. The first category contains local classifier based
algorithms, where a local classifier is iteratively trained using node attributes
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and network information to predict labels for unlabeled nodes, such as logis-
tic regression local classifier. Iterative Classification Algorithm (ICA) [11] and
Link Based Classification algorithm [6] are examples of such algorithms. These
algorithms iteratively predict labels for the unlabeled nodes in the graph using
predicted labels in the previous round of predictions.

The second category of algorithms are label propagation based algorithms,
where the algorithms use random walks to learn a global labeling function across
the network [19]. These algorithms predict labels for nodes in the graph by
considering hitting probability of each label in a random walk.

The third, and newest, category of node classification algorithms learn a deep
representation of the network and labeling function. There are two approaches
to learning this representation. The first approach uses network embedding-
based algorithms, which generate feature vectors for nodes in a graph in an
unsupervised manner. These algorithms use multiple random walks starting at
each node, and trains a prediction model based on these features [2, 13]. The
second approach is learning a labeling function using deep neural networks based
on graph representation. Graph Convolutional Neural Networks (Graph CNN)
are widely used to conduct node classification under this category [5].

In the current work, we consider node classification algorithms from each
category mentioned above and show how the CP framework can be applied to
obtain predictions with guaranteed error bounds.

2.2 Conformal Prediction Framework

The CP framework outputs a set of predictions for a given sample with a bounded
error rate by comparing “how typical” the sample is as contrasted to other
samples [16]. Suppose that we are given a data set Z = {z1, z2, . . . , zn} where
zi = (xi, yi); xi ∈ Rd is the feature vector of the sample i, and yi ∈ Y is the class
label for ith sample. Here, Y is the set of class labels, i.e. Y = {y1, y2, . . . , y`}.

Given a new sample with feature vector xn+1, the CP framework measures
how typical the following sequence is: (z1, z2, . . . , zn, (xn+1, y

k)), where yk ∈ Y .
Since we already know the labels for z1, z2, . . . , zn, we are in effect measuring
how typical the sequence is when label yk is assigned to the new sample, and
how likely is that n+ 1’s true label is yk [12].

The CP framework uses a test for randomness to measure how likely a se-
quence is, where the pcp−value for a given sequence is calculated using Equa-
tion (1). A given conformity measure calculates the “typicalness” of a data in-
stance (α values). The αi is the conformity score for ith data instance [12].3

pcp(z1, z2, . . . , (xn+1, y
k)) =

|{i = 1, . . . , n : αi ≤ αn+1}|
n

(1)

p−values vs. pcp−values: We adopt notation pcp−value instead of p−value
in this paper to avoid any confusion since a higher pcp−value in CP framework

3 Note that the “≤” sign in Equation 1 changes to “≥” if we are using a non-conformity
function instead of conformity.



4 P. Wijegunawardana et al.

means the label in consideration is highly likely. Conversely, a higher p−value in
general means that there is stronger evidence towards the alternative hypothesis.

Given some significance value ε, CP framework first calculates pcp−values for
all sequences considering all possible class labels; then the prediction set of n+1
sample at ε significance is calculated using Equation (2).

P (n+ 1, ε) = {yk : yk ∈ Y & pcp(z1, z2, . . . , (xn+1, y
k)) > ε} (2)

For example, consider we are predicting hobbies in a social network. A node
can have one of the hobbies among the following; {reading, singing, dancing,
cooking}. When we use the CP framework, for an unlabeled node v, we observe
that the pcp−values for each label are {0.2, 0.1, 0.01, 0.02}. If we set significance
to 0.05, both reading and singing will be predicted as hobbies of node v since
both these labels have pcp−values higher than the significance level. This also
shows that the chance of generating sequences including dancing and cooking as
labels is less than 5%, implying that these labels are highly unlikely.

Note that in Equation (2), the CP framework outputs the set of labels that
satisfy the specified significance rather than a single prediction. Therefore, CP
framework predictions can have one prediction, multiple predictions, or zero
predictions, in case none of the labels satisfy the significance requirement. The
probability of not including true labels in the prediction set is less than the
specified threshold, providing an error rate bounded by the significance level. If
we are to predict labels at significance ε, the probability of not including the
correct label in the prediction set is ε and the confidence in the prediction is
1− ε.

The CP framework provides guaranteed error bounds for predictions under
the assumption that the data is exchangeable, meaning any permutation of the
sequence (z1, z2, . . . , zn, (xn+1, y

k)) should result in the same pcp−value. This
assumption is necessary to obtain the pcp−value using Equation (1).

The CP framework was originally introduced in the transductive setting,
where the true label of the current sample is revealed before the arrival of the
next sample [16]. In this setting, the given model is trained considering each
possible label for new data instance and the framework measures how typical
the model is. Since this setting requires training the model for each new data
instance and each possible label, applying this in a real world setting would be
very inefficient.

The Inductive Conformal Prediction (ICP) is an alternative approach which
splits the training data into actual training set and a calibration set, and uses
the calibration set to conduct CP [12]. The ICP framework uses the training set
to train the underlying prediction model, and the calibration set to calculate
the pcp−value. In the ICP setting, we only consider the calibration set when
calculating the pcp−value of Equation (1).

2.3 Related Work

Bayesian Framework, Probably Approximately Correct Learning theory (PAC
theory) [3] and generalization error bounds [9] are other frameworks that provide
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bounded error rates in machine learning applications. Bayesian Framework error
rates are dependent on the priors that are used in the estimation. Hence, the
error bounds are not guaranteed in case priors are wrong. PAC theory and
generalization error bounds provides upper bounds on the trained model rather
than individual samples. The only assumption that the CP framework makes is
that the data is exchangeable, which is valid for most machine learning data.
Dashevskiy et al. [1] show that even in cases where exchangeability assumption is
violated (e.g., time series data), the CP framework still provides reasonable error
bounds. The CP framework, unlike PAC theory and generalization error bounds,
can provide error bounds for individual samples rather than the algorithm.

Initial work on the CP framework was primarily theoretical, and focused
on proving the error bounds. Applying the CP framework to machine learning
algorithms required defining conformity measures specific to algorithms, showing
that the data is in fact exchangeable. Research in this area shows how the CP

framework can be applied to various algorithms including decision trees [4],
neural networks [12], and SVM [7] etc.

To best our knowledge, this is the first work that considers providing guar-
anteed error bounds for node classification algorithms, and shows how the CP

framework can be applied to obtain those error bounds

3 Methodology

We now introduce the details of how the ICP framework can be applied to node
classification algorithms. In the zn = (xn, yn) a node classification problem, we
have that xn ∈ Rd is the d-dimensional feature vector for node n, and yn is the
label of node n.

To show that the ICP framework applies, we must demonstrate that the data
is exchangeable. Note that this does not require that the data is i.i.d., simply
that all permutations of each sequence of training samples are equally likely.
Since we are drawing training samples uniformly at random from the set of
nodes, exchangeability holds. We also considered sampling training data using a
network crawling algorithm such as random walk or snowball sampling. Resulting
error bounds are not valid in these cases since any training node ordering is not
equally likely (not exchangeable) for random walk or snowball sampling.

The conformity function is an integral part of the ICP framework, measuring
how different the data instance in consideration from the calibration set. Any
real valued conformity function that measures how different a sample is can be
used to produce valid nested prediction regions [17], but the efficiency (smaller
prediction regions) of the algorithm depends on how well the nonconformity
function measures differences between data instances. For example, an efficient
prediction according to our hobby prediction example in Section 2 would be
predicting one hobby as the label. An inefficient prediction would have no hobby
or more than one hobby in the prediction set.

Consider a prediction algorithm that outputs a vector σn ∈ R|Y | for some
unlabeled node n, indicating the probability that n would belong to each class
in Y . One possible conformity measure for such an algorithm is the probability
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margin, which is the difference between the label in consideration and the highest
probability of any other label [14]. We can calculate the probability margin
conformity score for some label yk ∈ Y using Equation 3.

C(n, yk) = σn(yk)− max
yi∈Y :yi 6=yk

(σn(yi)). (3)

Given a node classification algorithm M , a graph G, set L of labeled nodes,
set U of unlabeled nodes, a significance level ε, and a conformity function C, we
introduce Algorithm 1 to show how the ICP framework can be applied to node
classification problem.

Algorithm 1 ICP for Node Classification

Input: G= Graph, L = labeled nodes, U = unlabeled nodes,M = prediction
algorithm, C= Conformity function, ε = significance

Output: Prediction set for each node in U at significance ε

1: procedure ICP
2: Divide L into T = training set and S = calibration set
3: Train M using G and T . Train prediction model M
4: for s ∈ S do
5: σs = M(s) . Get prediction probability vector σs for s
6: αs = C(σs, ys) . Calculate conformity score for s and s’s label ys

7: for u ∈ U do
8: Pu = {} . u’s prediction set at significance ε
9: for yk ∈ Y do

10: σu = M(u)
11: αu = C(σu, y

k)

12: p = |{s∈S:αs≤αu}|
|S| . Calculate p-value for label yk

13: if p > ε then
14: Pu.add(yk) . Add yk to u’s prediction set

4 Experiments

We conduct experiments to evaluate whether the ICP framework predictions
meet the specified error bounds. We consider node classification algorithms from
different categories: Iterative Classification Algorithm (ICA), Label Propagation
(LP), Graph Convolutional Network (GCN), and Deepwalk (DW). We now in-
troduce the performance metrics and data sets used in our research.

4.1 Performance Metrics

Our evaluation closely follows the evaluation criteria in [4]. We use several mea-
sures to evaluate the quality of predictions made by ICP framework for the node
classification problem:

1. We check whether the ICP framework predictions meet the specified maxi-
mum error bounds. Since node classification graph data meets the exchange-
ability assumption, the specified error bounds should be met.
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Table 1: Network dataset statistics

Dataset Type Nodes Edges Label Classes
Label

Assortavity

Cora Citation 2708 5278 Research area 7 0.771

PubMed Citation 19717 44327 Research area 3 0.686

Blogcatalog Social 10312 333983 Blogger group 39 0.05

Facebook100 Social 2235 90954 Year 9 0.409

PPI Biological 3890 38739 Biological state 50 0.05

2. We evaluate the ICP framework predictions based on their efficiency. Since
the ICP framework outputs a set of predictions for a node based on its
conformity score, an efficient prediction would have only a single class in the
prediction set. We consider the fraction of predictions with only one class
(OneC), multiple classes (MultiC) and zero classes (ZeroC) to evaluate the
efficiency of the ICP framework.

3. We compare the accuracy of the baseline prediction model (BaselineAcc)
with the accuracy of one class predictions (OneAcc) from the ICP frame-
work to show that the ICP framework enhances performance of the baseline
prediction model.

4.2 Datasets

Node classification algorithms generally perform well on assortative networks,
but less well on nodes are not assortative. Accordingly, we have selected graph
datasets with varying levels of assortativity. For each network, we use the largest
connected component. Cora [8,15] and PubMed [10] are citation networks, show-
ing citation relationships between papers. Facebook100 4 is the Amhrest college
Facebook friendship network. BlogCatalog [18] is a blogger friendship network.
The Protein-Protein Interaction network [2] is a subgraph of the PPI Homo
Sapiens network. Networks are described in Table 1.

4.3 Experimental Setup

We run experiments as a multi-class prediction problem where we vary the per-
centage of labeled nodes in the network from 10% up to 50%. We randomly
sample the labeled data from each class proportional to the size of the class and
report average performance over 10 runs. We used 25% of the training data as
the calibration set to conduct conformal prediction.

For ICA and Deepwalk, we use a multi-class logistic regression classifier as the
base classifier. We set Deepwalk hyper parameters for all data sets as follows:
80 walks, 128 dimension representation, window size 10, and walk length 40
according to [13]. GCN hyper parameters are set at 0.5 dropout rate, 5.10−4 L2
regularization and 16 hidden units, according to [5].
4 Obtained from https://archive.org/download/oxford-2005-facebook-matrix.
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Fig. 2: Accuracy and efficiency for Cora citation data set using ICA as the baseline
algorithm when 10%, 30% and 50% of the nodes are labeled. The actual error is always
no greater than the specified significance level.

5 Results
Figure 2 shows results of ICP using ICA on the Cora citation network with
10%, 30% and 50% of the nodes labeled, using the performance metrics discussed
in Section 4.1. First, we see that the actual errors in all algorithms are very close
to the given significance level, demonstrating that the ICP framework in fact
provides accurate error bounds for node classification algorithms.

Second, as expected, the percentages of OneC (one-class predictions) and
MultiC (multiple-class predictions) increase and decrease as we increase the sig-
nificance level, respectively. Recall our hobby prediction example in Section 2
where pcp−values of node v for labels; reading, singing, dancing and cook-
ing are {0.2, 0.1, 0.01, 0.02} respectively. If we set significance to 0.01, all label
pcp−values will satisfy the significance requirement and hence will be included
in the prediction set. Therefore, we can observe many multiple-class predictions
at lower significance values. When we increase significance level to, e.g., 0.15,
only one label satisfies the significance requirement, increasing the number of
one-class predictions. ZeroC (zero class predictions) slightly increases at higher
significance values causing OneC to reduce slightly, because if we set significance
to 0.2, none of the labels meet significance.

Finally, we see that the accuracy of the ICP framework is higher than the ac-
curacy of the baseline node classification algorithm, showing that the predictions
from ICP are more reliable than those from the baseline prediction algorithm.
Results are consistent across different algorithms and labeled node percentages.

Tables 2 and 3 summarize the performance of the ICP framework applied
to ICA and Label Propagation, respectively. Both algorithms closely maintain
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Table 2: Conformal prediction framework performance using ICA as the baseline
algorithm. Average performance over 10 runs where randomly selected 30% of
the nodes are labeled in each run.

Dataset Significance Error OneC MultiC ZeroC OneAcc BaseAcc

Fb100
Amherst

0.05 0.045 ± 0.01 0.58 0.42 0 0.94
0.820.15 0.133 ± 0.02 0.88 0.12 0 0.87

0.25 0.25 ± 0.02 0.85 0 0.15 0.88

BlogCatalog
0.05 0.05 ± 0.01 0.05 0.95 0 0.52

0.230.15 0.15 ± 0.01 0.11 0.89 0 0.48
0.25 0.25 ± 0.01 0.15 0.85 0 0.44

PubMed
0.05 0.046 ± 0.01 0.52 0.48 0 0.92

0.830.15 0.154 ± 0.01 0.97 0.03 0 0.85
0.25 0.257 ± 0.01 0.84 0 0.16 0.89

PPI
0.05 0.051 ± 0.01 0.03 0.97 0 0.21

0.100.15 0.147 ± 0.01 0.08 0.92 0 0.18
0.25 0.248 ± 0.02 0.14 0.86 0 0.17

Table 3: Conformal prediction framework performance using Label Propagation
as the baseline algorithm. Average performance over 10 runs where randomly
selected 30% of the nodes are labeled in each run.

Dataset Significance Error OneC MultiC ZeroC OneAcc BaseAcc

Cora
0.05 0.043 ± 0.01 0.60 0.40 0 0.94

0.830.15 0.141 ± 0.03 0.89 0.09 0.01 0.87
0.25 0.252 ± 0.04 0.85 0 0.15 0.89

PubMed
0.05 0.052 ± 0.01 0.54 0.46 0 0.91

0.820.15 0.149 ± 0.01 0.92 0.08 0 0.85
0.25 0.253 ± 0.01 0.87 0 0.13 0.86

Fb100
Amherst

0.05 0.052 ± 0.01 0.38 0.62 0 0.93
0.780.15 0.144 ± 0.01 0.71 0.29 0 0.88

0.25 0.252 ± 0.03 0.92 0.01 0.07 0.81

BlogCatalog
0.05 0.049 ± 0.01 0.04 0.96 0 0.36

0.220.15 0.149 ± 0.01 0.10 0.90 0 0.38
0.25 0.253 ± 0.01 0.15 0.85 0 0.39

PPI
0.05 0.048 ± 0.01 0.04 0.96 0 0.12

0.100.15 0.146 ± 0.01 0.10 0.90 0 0.11
0.25 0.239 ± 0.03 0.15 0.85 0 0.11

the given error bounds. ICP framework can cause the prediction errors to be
slightly higher than the given error bound since the predictions are based on the
calibration set rather than the whole training set.

Further, applying ICP improves baseline accuracy of both algorithms in all
data sets. The ICP improves ICA accuracy in FB100 data from 0.82 to 0.94,
while predicting singleton labels for 58% of the nodes with a guaranteed er-
ror rate of 5%. In the Label Propagation algorithm, ICP improves accuracy for
Facebook100 data from 0.78 to 0.93, while predicting singleton labels for 38%
of the nodes with a guaranteed error rate of 5%. When the baseline predictor
accuracy is reasonable, ICP provides efficient predictions (more singleton pre-
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Table 4: Conformal prediction framework performance using GCN as the baseline
algorithm. Average performance over 10 runs where randomly selected 30% of
the nodes are labeled in each run.

Dataset Significance Error OneC MultiC ZeroC OneAcc BaseAcc

Cora
0.05 0.045 ± 0.01 0.70 0.30 0 0.95

0.830.15 0.141 ± 0.02 0.93 0.07 0 0.86
0.25 0.248 ± 0.03 0.83 0 0.17 0.91

PubMed
0.05 0.047 ± 0.01 0.72 0.28 0 0.94

0.850.15 0.151 ± 0.01 0.98 0.01 0.01 0.86
0.25 0.249 ± 0.01 0.82 0 0.18 0.92

Fb100
Amherst

0.05 0.048 ± 0.01 0.43 0.57 0 0.96
0.720.15 0.139 ± 0.02 0.59 0.41 0 0.9

0.25 0.251 ± 0.02 0.90 0.10 0 0.77

BlogCatalog
0.05 0.049 ± 0.01 0.001 0.999 0.05 0

0.120.15 0.139 ± 0.01 0.005 0.995 0 0.05
0.25 0.238 ± 0.01 0.01 0.99 0 0.11

PPI
0.05 0.049 ± 0.01 0.0002 0.9998 0 0.03

0.050.15 0.143 ± 0.02 0.002 0.998 0 0.18
0.25 0.239 ± 0.02 0.005 0.995 0 0.11

dictions). When the baseline predictor does not perform well, conformity scores
also become less meaningful leading ICP to make more multiple predictions. In
blogcatalog, at significance level 0.15, only 11% of the predictions are singletons.

Tables 4 and 5 summarize results for GCN and DeepWalk respectively.
GCN algorithm works well when node labels show homophily (Cora, FB100
and PubMed). In the Blogcatalog and PPI data sets, GCN algorithm baseline
accuracy is 0.12 and 0.05, making it impractical to get meaningful predictions.
The Deepwalk algorithm only considers network structure when predicting la-
bels. If node labels are not correlated with the structure, even if data shows high
homophily, Deepwalk baseline accuracy is low. In general, both these algorithms
maintain the error bounds but provide inefficient predictions in some cases.

5.1 Perturbation Analysis

Real world network data collection can be prone to errors. In Figure 3, we
show the effect of mislabeled data on ICP framework predictions. We consider
the CORA data set with 30% of the nodes initially labeled and change labels
randomly for 10%, 30% and 50% of the nodes in the training data. Figure 3 shows
that mislabeled training data does not affect ICP error bounds. As we increase
the percentage of mislabeled data, the efficiency of predictions decreases, since
the percentage of singleton predictions decreases.

6 Discussion and Conclusion

In this work we consider the problem of providing guaranteed error bounds for
predictions in node classification algorithms. We use the CP framework, which
works with a given prediction model to provide bounded error rates. We use ICP

a more efficient variant of the CP framework and show how this can be applied to



Node Classification with Bounded Error Rates 11

Table 5: Conformal prediction framework performance using DeepWalk as the
baseline algorithm. Average performance over 10 runs where randomly selected
30% of the nodes are labeled in each run.

Dataset Significance Error OneC MultiC ZeroC OneAcc BaseAcc

Cora
0.05 0.048 ± 0.01 0.59 0.41 0 0.94

0.820.15 0.150 ± 0.02 0.90 0.09 0.01 0.86
0.25 0.239 ± 0.03 0.88 0 0.12 0.87

PubMed
0.05 0.048 ± 0.01 0.53 0.47 0 0.92

0.800.15 0.149 ± 0.01 0.89 0.11 0 0.84
0.25 0.245 ± 0.01 0.90 0 0.10 0.84

Fb100
Amherst

0.05 0.047 ± 0.02 0.001 0.999 0 0.14
0.150.15 0.155 ± 0.02 0.005 0.995 0 0.12

0.25 0.268 ± 0.04 0.01 0.99 0 0.13

BlogCatalog
0.05 0.057 ± 0.01 0.012 0.988 0 0.82

0.280.15 0.153 ± 0.01 0.02 0.98 0 0.79
0.25 0.255 ± 0.01 0.03 0.97 0 0.76

PPI
0.05 0.051 ± 0.01 0.0002 0.9998 0 0.43

0.110.15 0.151 ± 0.02 0.005 0.995 0 0.32
0.25 0.250 ± 0.02 0.007 0.993 0 0.31
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(b) 30% mislabeled
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(c) 50% mislabeled

Fig. 3: Performance of ICP applied to CORA citation data with 30% of nodes initially
labeled. ICA is used as the baseline. Note that 10%, 30% and 50% of training data
mislabeled. ICP maintains the error bounds even when 50% of the training data is
mislabeled. But the efficiency decrease as there are more errors.

ICA, Label Propagation, GCN and DeepWalk algorithms to improve prediction
accuracy and provide more reliable predictions. We evaluate performance of
this framework using citation, social and biological networks and show that 1)
Specified significance levels are maintained across all data sets and Algorithms,
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and 2) ICP can in fact improve accuracy of baseline algorithms. We conduct a
perturbation analysis to show that ICP framework error bounds are not affected
by the perturbations, rather the efficiency is affected.
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