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Abstract—Linear programming is required in a wide variety of 

application including routing, scheduling, and various 

optimization problems. The primal-dual interior point (PDIP) 

method is state-of-the-art algorithm for solving linear programs, 

and can be decomposed to matrix-vector multiplication and solving 

systems of linear equations, both of which can be conducted by the 

emerging memristor crossbar technique in O(1) time complexity in 

the analog domain. This work is the first to apply memristor 

crossbar for linear program solving based on the PDIP method, 

which has been reformulated for memristor crossbars to compute 

in the analog domain. The proposed linear program solver can 

overcome limitations of memristor crossbars such as supporting 

only non-negative coefficients, and has been extended for higher 

scalability. The proposed solver is iterative and achieves O(N) 

computation complexity in each iteration. Experimental results 

demonstrate that reliable performance with high accuracy can be 

achieved under process variations. 

I. INTRODUCTION  

Linear programs are common in a wide variety of 
applications, including routing, scheduling, and other 
optimization problems. Interior point methods are a popular class 
of algorithms for solving linear programs. Unlike the well-
known simplex algorithm, which traverses vertices of the 
feasible region to find the optimal solution, interior point 
methods trace a path through the interior of the feasible region. 
The primal-dual interior point (PDIP) method uses the gap 
between the current solutions of the primal linear program and 
its dual in order to determine the path to follow within the 
feasible region. In each iteration, the algorithm involves 
calculating matrix-vector product and solving systems of linear 
equations. The emerging memristor crossbar technology can be 
potentially utilized to achieve significant speed-ups due to its 
significant benefits in matrix operations. 

Memristor was predicted as the fourth circuit element nearly 
half a century ago [17]. It was not physically created until 2008 
by HP lab [18]. Non-volatility, low power consumption, and 
excellent scalability are some of its promising features. More 
importantly, its capability to record historical resistance makes it 
unique, and has resulted in heightened interests over the last 
several years. A crossbar structure of memristor devices (i.e. a 
memristor crossbar) can be utilized to perform matrix-vector 
multiplication and solve systems of linear equations in the analog 
domain in O(1) time complexity [7][8][9]. Such advantages in 
matrix operations make it ideal candidate for implementing the 
state-of-the-art PDIP method for solving linear programs given 
its high usage of matrix-vector multiplication and solving linear 

systems. Moreover, the effect of process variations of memristor 
devices can be significantly mitigated (as shown in experimental 
results) by the inherent noise tolerance of the iterative PDIP 
algorithm. 

Although promising, multiple challenges need to be 
overcome when applying memristor devices for linear program 
solving. Since the memristor crossbar performs matrix 
operations in the analog domain, we need to formulate the whole 
PDIP algorithm using memristor crossbar in the analog domain 
in order to avoid the significant overhead of D/A and A/D 
conversions. Moreover, some limitations of memristor crossbars 
(e.g., only non-negative matrix coefficients and square matrices 
when solving a system of linear equations can be supported) need 
to be properly addressed. 

To the best of our knowledge, this paper is the first to provide 
a comprehensive algorithm-hardware framework on memristor 
crossbar for linear program solving. The PDIP method is 
reformulated for memristor crossbar and analog computations. 
The proposed solver can effectively deal with matrices 
containing negative numbers, and has been extended for linear 
program solving with higher scalability that can overcome size 
limitations of the memristor crossbar structure. The proposed 
solver achieves pseudo-O(N) computation complexity, i.e., O(N) 
complexity in each iteration, which is a significant improvement 
compared with the software-based PDIP method of O(N3). 
Experimental results demonstrate that the performance of 
proposed implementation is reliable with less than 4% 
inaccuracy on average under 10% process variations.  Based on 
our estimation, the proposed solver could lead to 7960X 
improvements in speed and 6.7 × 105 X reduction in energy 
consumption. 

II. BACKGROUND 

A.  Linear Program Solving Methods 

The simplex method of Dantzig was the first efficient 
algorithm for solving linear programming problems, and is still 
popular today [21]. The simplex algorithm considers the feasible 
region of the linear program (i.e., the space of points satisfying 
all constraints), which is a polytope. The algorithm begins at one 
vertex of the polytope, and moves from vertex to vertex in such 
a way as to increase the value of the objective function. The 
simplex algorithm is extremely efficient in practice, but has 
exponential running time in the worst case [20]. 

Interior point methods for solving linear programs were 
developed in response to this inefficiency. Unlike the simplex 
algorithm, which moves from vertex to vertex of the feasible 
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region, interior point methods traverse the interior of this region. 
Karmarkar’s projective method was the first interior point 
algorithm that was both polynomial time in the worst case as well 
as fast in practice [20]. This method first begins at an interior 
point within the feasible region. It next applies a projective 
transformation so that the current interior point is the center of 
the projective space, and then moves in the direction of steepest 
descent. This is repeated until convergence. 

The primal-dual interior point method uses the above 
technique, but incorporates information from the dual of the 
problem. Every linear program has a dual program, with the 
property that when the primal linear program has an optimal 
solution, the dual linear program also has the same optimal 
solution, and these two solutions are equal. The primal-dual 
interior point method exploits this property by simultaneously 
solving both the primal linear program as well as its dual, and 
steadily decreasing the duality gap (i.e., the difference between 
the value of the current solution to the primal and the current 
solution to the dual). 

B. Memristor and Memristor Crossbar 

Memristor was introduced by L.O. Chua as the fourth 
element of circuit and was founded by HP labs in 2008 [17][18]. 
It remembers its most recent resistance, which can be altered by 
excitation with energy greater than a threshold [3]-[6]. More 
specifically, the state of a memristor will change when certain 
voltage higher than the threshold voltage, i.e., |𝑉𝑚| > |𝑉𝑡ℎ|, is 
applied at its two terminals for a small time period. Otherwise, 
the memristor behaves like a resistor. Such memristive property 
makes it an ideal candidate for non-volatile memory and matrix 
computations [7][8]. 
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Fig. 1. Structure of Memristor Crossbar 

With its high degree of parallelism, the memristor crossbar 
array is attractive for matrix computations (which can often be 
performed with O(1) time complexity). A typical structure of an 
N×N memristor crossbar is shown in Fig. 1, in which a 
memristor is connected between each pair of horizontal word-
line (WL) and vertical bit-line (BL). This structure could provide 
large number of signal connections within a small footprint. In 
addition, it is capable of reprogramming each memristor to 
different resistance states by properly applying biasing voltages 
at its two terminals [1][2][9]. For multiplications, a vector of 

input voltages 𝐕𝐈 is applied on WLs and the current through each 

BL can be collected by measuring the voltage across resistor 𝑅𝑠 
with conductance of 𝑔𝑠 . Assume that the memristor at the 

connection between WL𝑖  and BL𝑗  has a conductance of 𝑔𝑖,𝑗 . 

Then the output voltages are represented by 𝐕𝐎 = 𝐂 ∙ 𝐕𝐈, where 

the connection matrix 𝐂  is constructed by a programmed 

crossbar array, which transfers the input vector 𝐕𝐈 to the output 

vector 𝐕𝐎. 𝐂 is determined by the conductance of memristors: 

𝐂 = 𝑫 ∙ 𝑮𝑇 = 𝑑𝑖𝑎𝑔(𝑑1, … , 𝑑𝑁 ) ∙ [

𝑔1,1 … 𝑔1,𝑁

⋮ ⋱ ⋮
𝑔𝑁,1 … 𝑔𝑁,𝑁

]

𝑇

 (1) 

where  𝑑𝑖 = 1/(𝑔𝑠 + ∑ 𝑔𝑘,𝑖)
𝑁
𝑘=1 . 

 In reverse, the memristor crossbar structure can also be used 
to solve a linear system of equations, by mapping the linear 
equations to the memristor crossbar structure. A voltage vector 
𝐕𝐎 is applied on each 𝑅𝑠 of BL, so the current flowing through 

each BL can be approximated as 𝐼𝑜,𝑗 = 𝑔𝑠𝑉𝑜,𝑗 . On the other 

hand, current 𝐼𝑜,𝑗  through BL𝑗  can also be calculated as 𝐼𝑜,𝑗 =

∑ 𝑉𝐼,𝑖𝑔𝑖,𝑗𝑗 . Hence, for each BL𝑗, equation 
1

𝑔𝑠

∑ 𝑉𝐼,𝑖𝑔𝑖,𝑗 = 𝑉𝑜,𝑗𝑗  is 

mapped. Therefore, the system of linear equations 𝐂 ∙ 𝐕𝐈 = 𝐕𝐎 is 
mapped to the memristor crossbar structure, and solution 𝐕𝐈 can 
be determined by measuring voltages on the WLs. Please note 
that, elements of matrix 𝐂 should be non-negative in order to be 
mapped to memristor crossbar, because resistance cannot reach 
negative values. It is worth mentioning that the matrix 
calculation process with the memristor crossbar just has a 
negligible effect on memristance of each memristor, because the 
time period that current go through a memristor is short enough 
during the calculation process. 

It is proved in [9] that a fast and simple approximation 𝑔𝑖,𝑗 =

𝑐𝑖,𝑗 ∙ 𝑔𝑚𝑎𝑥  can be adopted for mapping above matrix onto the 

memristor crossbar (𝑔𝑚𝑎𝑥  is the largest value in 𝑮). Therefore 

for matrix-vector multiplication 𝐀𝑥 = 𝑏 , 𝐀 = 𝑔𝑚𝑎𝑥 ∙  𝐂 and  𝑏 =
 𝑔𝑠𝑽𝑶; for the solution of linear system 𝐀𝑥 = 𝑏,  𝐀 = 𝑔𝑚𝑎𝑥 ∙  𝐂 

and 𝑥 =  
𝑔𝑠

𝑔𝑚𝑎𝑥
𝑽𝑰.  

III. MEMRISTOR CROSSBAR-BASED LINERA PROGRAM SOLVER 

We present a memristor crossbar based linear program 

solver based on the PDIP algorithm, which overcomes 

hardware limitations of memristor crossbar while taking its 

advantages on matrix operations. The presented solver could 

handle the vastly used matrix operations in PDIP algorithm 

efficiently with significantly reduced computation complexity 

(to pseudo-O(N)), power consumption, and latency. Moreover, 

the proposed solver can deal with matrices containing negative 

numbers that cannot be directly mapped on to memristor 

crossbars. In addition, we introduce an extension for linear 

program solving with higher scalability that can overcome size 

limitations of the memristor crossbar structure. 

This section is organized in five parts: The PDIP algorithm 

is discussed in part A; The proposed memristor crossbar-based 

linear program solver is introduced in part B; Part C discusses 

writing coefficients in memristor crossbar, and the proposed 

solutions for representing and computing large-scale matrices 

are introduced in part D. Part E investigates computation 

complexity of proposed memristor crossbar-based solvers. 

A. The Primal-Dual Interior Point (PDIP) Method for Solving 

Linear Programs 

Linear programs or linear programming problems [15] are 

problems that can be expressed as: 

 Maximize 𝒄𝑻𝒙 subject to:  

         𝑨𝒙 ≼ 𝒃 (𝑨 ∈ ℝ𝒎×𝒏)    𝒙 ≽ 𝟎  

where 𝑨𝒙 ≼ 𝒃 means that every element in vector 𝑨𝒙 is smaller 

than or equal to corresponding element in vector 𝒃. Every linear 

program can be converted into a symmetrical dual problem: 

318



 Minimize 𝒃𝑻𝒚 subject to:  

 𝑨𝑻𝒚 ≽ 𝒄      𝒚 ≽ 𝟎. 

By Introducing two additional variables, inequality 

constraints can be transformed into equality constraints. The 

above problem can be reformulated as follows [16]: 

Maximize 𝒄𝑻𝒙 subject to: 

𝑨𝒙 + 𝒘 = 𝒃                           𝒙, 𝒘 ≽ 𝟎 (2a) 

and its dual: 

Minimize 𝒃𝑻𝒚 subject to: 

𝑨𝑻𝒚 − 𝒛 = 𝒄                           𝒚, 𝒛 ≽ 𝟎 (2b) 

with complementary conditions: 

∀𝑖 ∈ ℕ ∩ [1, 𝑛] ∧ ∀𝑗 ∈ ℕ ∩ [1,𝑚]: 𝑥𝑖𝑧𝑖 = 0, 𝑦𝑗𝑤𝑗 = 0  

which can be represented using the following matrix notations: 

𝑿𝒁𝒆 = 𝟎, 𝒀𝑾𝒆 = 𝟎 (2c) 

In the above equation, uppercase notations are utilized to denote 

diagonal matrices, e.g.,  

𝑿 = 𝑑𝑖𝑎𝑔(𝑥1, … , 𝑥𝑛), 

where 𝒙 = [𝑥1, … , 𝑥𝑛]𝑻 , and the subscript e stands for the 

reverse operation, that is 𝑿𝒆 = [𝑿𝟏𝟏, … , 𝑿𝒊𝒊, … , 𝑿𝒏𝒏]
𝑻. 

Due to nonlinearity characteristics in (2c), the above problem 

is difficult to solve directly. The interior point algorithm [14][16] 

is introduced to solve this problem effectively. In this algorithm, 

x, y, w, z are initialized as arbitrary vectors and updated 

iteratively until Eqns. (2a) – (2c) are (sufficiently) satisfied. In 

each iteration, a set of vectors Δ𝒙 , Δ𝒚 , Δ𝒘 , Δ𝒛 , which are 

referred to as step direction vectors, are derived from solving the 

following system of equations: 

𝑨(𝒙 + Δ𝒙) + (𝒘 + Δ𝒘) = 𝒃       (3a) 

𝑨𝑻(𝒚 + 𝜟𝒚) − (𝒛 + 𝜟𝒛) = 𝒄       (3b) 

(𝑿 + 𝜟𝑿)(𝒁 + 𝜟𝒁)𝒆 = 𝝁       (3c) 

(𝒀 + 𝜟𝒀)(𝑾 + 𝜟𝑾)𝒆 = 𝝁       (3d) 

where 𝝁 is a small value vector. Since x, y, w, z are nonnegative 

vectors, the complementary conditions in (2c) are replaced with 

𝝁-complementary conditions (3c) and (3d). Ignoring the second-

order elements in (3c) and (3d), the above system of equations 

can be represented as a system of linear equations of Δ𝒙, Δ𝒚, 

Δ𝒘, Δ𝒛, denoted by: 

𝑨Δ𝒙 + Δ𝒘 = 𝒃 − 𝑨𝒙 − 𝒘           (4a) 

𝑨𝑻Δ𝒚 − 𝜟𝒛 = 𝒄 − 𝑨𝑻𝒚 + 𝒛     (4b) 

𝒁𝜟𝒙 + 𝑿Δ𝒛 = 𝝁 − 𝑿𝒁𝒆 (4c) 

𝑾𝜟𝒚 + 𝒀Δ𝒘 = 𝝁 − 𝒀𝑾𝒆       (4d) 

The unknown vectors Δ𝒙, Δ𝒚, Δ𝒘, Δ𝒛 can be calculated from 

solving the system of linear equations (4a)-(4d) and applied to 

update x, y, w, z. Above steps are repeated until 𝑨𝒙 + 𝒘 − 𝒃 and 

𝑨𝑻𝒚 − 𝒛 − 𝒄 are small enough. 

B. Memristor Crossbar-based Linear Program Solver Using 

PDIP Algorithm 

The memristor crossbar array structure has high potential for 

implementing PDIP algorithms due to its advantages in matrix 

operations. However, the memristor crossbar array structure has 

some limitations, which necessitate the adjustment of PDIP 

algorithm for effective memristor crossbar based 

implementations. Since the matrix elements are represented as 

non-negative memristance values in the memristor crossbar, a 

novel mechanism is required for representing negative matrix 

coefficients. In addition, the linear system to be solved should 

have a square coefficients matrix. Next, we propose a memristor 

crossbar based linear program solver using PDIP algorithm 

through effectively resolving the abovementioned issues.  

For facilitating memristor-based implementations, linear 

equations in (4a) – (4b) can be rewritten as a linear system with 

2(n+m) variables, as shown in (5): 

[

𝑨 𝟎 𝑰 𝟎
𝟎 𝑨𝑻 𝟎 −𝑰
𝒁 𝟎 𝟎 𝑿
𝟎 𝑾 𝒀 𝟎

] [

Δ𝒙
Δ𝒚
Δ𝒘
Δ𝒛

] = [

𝒃 − 𝑨𝒙 − 𝒘
𝒄 − 𝑨𝑻𝒚 + 𝒛

𝝁 − 𝑿𝒁𝒆

𝝁 − 𝒀𝑾𝒆

]  (5) 

where 𝑰 represents the identity matrix with diagonal values equal 

to 1. 

In order to make the matrix representable in memristor 

crossbar structure, new variables have to be introduced to 

eliminate negative elements. Consider a linear system 𝑨𝒙 = 𝒃, 

in which 𝑨𝒊,𝒋 is negative element. It can be transformed into a 

nonnegative matrix by introducing a compensation variable 

𝑥𝑐 = −𝑥𝑗 . Hence, the above linear system is equivalent to: 

 

[
 
 
 
 
 
𝑨𝟏,𝟏 … 𝑨𝟏,𝒋 … 𝑨𝟏,𝒏 𝟎

⋮ … … … ⋮ 𝟎
𝑨𝒊,𝟏 … 𝟎 … 𝑨𝒊,𝒏 −𝑨𝒊,𝒋

⋮ … … … ⋮ 𝟎
𝑨𝒏,𝟏 … 𝑨𝒏,𝒋 … 𝑨𝒏,𝒏 𝟎

𝟎 𝟎 𝟏 𝟎 𝟎 𝟏 ]
 
 
 
 
 

[
 
 
 
 
 
𝒙𝟏

⋮
𝒙𝒋

⋮
𝒙𝒏

𝒙𝒄]
 
 
 
 
 

=

[
 
 
 
 
 
𝒃𝟏

⋮
𝒃𝒋

⋮
𝒃𝒏

𝟎 ]
 
 
 
 
 

 (6) 

As shown in Eqn. (5), the matrix on left hand-side consists of 

a sub-matrix – 𝑰 introduced by Δ𝒛 in Eqn. (3b). A new variable 

vector, Δ𝒗 = −Δ𝒛 , has to be introduced. Besides, a 

compensation variable vector Δ𝒖 = −Δ𝒘  is required for 

maintaining a square matrix. In addition, 𝑨 and 𝑨𝑻 are the only 

matrices that may contain negative elements. Processes like Eqn. 

(6) are needed to eliminate all negative elements in 𝑨 and 𝑨𝑻. 

Therefore we have: 

[
 
 
 
 
 
 

𝑨′ 𝟎 𝑰 𝟎 𝟎 𝟎 𝟎 or 𝑨′′

𝟎 𝑨𝑻′ 𝟎 𝟎 𝟎 𝑰 𝟎 or 𝑨𝑻′′

𝒁 𝟎 𝟎 𝑿 𝟎 𝟎 𝟎
𝟎 𝑾 𝒀 𝟎 𝟎 𝟎 𝟎
𝟎 𝟎 𝑰 𝟎 𝑰 𝟎 𝟎
𝟎 𝟎 𝟎 𝑰 𝟎 𝑰 𝟎

𝟎 or 𝑨𝑰 𝟎 or 𝑨𝑻𝑰 𝟎 𝟎 𝟎 𝟎 𝟎 or 𝑰 ]
 
 
 
 
 
 

[
 
 
 
 
 
 
Δ𝒙
Δ𝒚
Δ𝒘
Δ𝒛
Δ𝒖
Δ𝒗
Δ𝒑]

 
 
 
 
 
 

=

[
 
 
 
 
 
 
𝒃 − 𝑨𝒙 − 𝒘
𝒄 − 𝑨𝑻𝒚 + 𝒛

𝝁 − 𝑿𝒁𝒆

𝝁 − 𝒀𝑾𝒆

𝟎
𝟎
𝟎 ]

 
 
 
 
 
 

 (7a) 

where Δ𝒑  comprises Δ𝑝𝑖 = {
−Δ𝑥𝑗  if 𝐴𝛼,𝑗 < 0 for some 𝛼

−Δ𝑦𝑘  if 𝐴𝛽,𝑘
𝑇 < 0 for some 𝛽 

.  𝑨′ 

and 𝑨𝑻′ are matrices that change the negative elements in 𝑨 and 

𝑨𝑻  to zero.  𝑨′′  and 𝑨𝑻′′  are matrices whose elements are the 

absolute values of negative elements in 𝑨 and 𝑨𝑻 . 𝑨𝑰  and 𝑨𝑻𝑰 
are matrices consisting of 1 and 0's. Locations of 1's depend on 

the locations of negative elements in 𝑨 and 𝑨𝑻 (please refer to 
Eqn. (6) as an example).  
 The above equation can be denoted as: 

𝑴Δ𝒔 = 𝒓 (7b) 

where 𝑴 can be implemented and variable vector Δ𝒔  can be 
derived using memristor crossbar.  

In the PDIP algorithm, once Δ𝒙 , Δ𝒚 , Δ𝒘 , Δ𝒛  (all in the 
derived vector Δ𝒔) are derived, we will update x, y, w, z, which 
can be performed using summing amplifiers. We will further 
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update the left-hand side matrix 𝑴  and the right hand-side 
vector 𝒓  of Eqn. (7b). Updating matrix 𝑴  is relatively 
straightforward since we only need to update 𝑿, 𝒀, 𝒁, and 𝑾 in 
𝑴, using the memristor writing technology as shall be discussed 
in part C. On the other hand, 𝒓 can be viewed as the difference 
of two vectors: 

𝒓 =

[
 
 
 
 
 
 
𝒃 − 𝑨𝒙 − 𝒘 
𝒄 − 𝑨𝑻𝒚 + 𝒛

𝝁 − 𝑿𝒁𝒆

𝝁 − 𝒀𝑾𝒆

𝟎
𝟎
𝟎 ]

 
 
 
 
 
 

=

[
 
 
 
 
 
 
𝒃
𝒄
𝝁
𝝁
𝟎
𝟎
𝟎]
 
 
 
 
 
 

−  

[
 
 
 
 
 
 
𝑨𝒙 + 𝒘 
𝑨𝑻𝒚 − 𝒛

𝑿𝒁𝒆

𝒀𝑾𝒆

𝟎
𝟎
𝟎 ]

 
 
 
 
 
 

 (8a) 

The subtraction could be implemented using summing 
amplifiers [3]. Next, we will discuss the calculation of the last 
vector in Eqn. (8a). Note that  

𝑴

[
 
 
 
 
 
 
𝒙
𝒚
𝒘
𝒛
𝒖
𝒗
𝒑]

 
 
 
 
 
 

=

[
 
 
 
 
 
 

𝑨′ 𝟎 𝑰 𝟎 𝟎 𝟎 𝟎 or 𝑨′′

𝟎 𝑨𝑻′ 𝟎 𝟎 𝟎 𝑰 𝟎 or 𝑨𝑻′′

𝒁 𝟎 𝟎 𝑿 𝟎 𝟎 𝟎
𝟎 𝑾 𝒀 𝟎 𝟎 𝟎 𝟎
𝟎 𝟎 𝑰 𝟎 𝑰 𝟎 𝟎
𝟎 𝟎 𝟎 𝑰 𝟎 𝑰 𝟎

𝟎 or 𝑨𝑰 𝟎 or 𝑨𝑻𝑰 𝟎 𝟎 𝟎 𝟎 𝟎 or 𝑰 ]
 
 
 
 
 
 

[
 
 
 
 
 
 
𝒙
𝒚
𝒘
𝒛
𝒖
𝒗
𝒑]

 
 
 
 
 
 

=

[
 
 
 
 
 
 
𝑨𝒙 + 𝒘 
𝑨𝑻𝒚 − 𝒛
𝟐𝑿𝒁𝒆

𝟐𝒀𝑾𝒆

𝟎
𝟎
𝟎 ]

 
 
 
 
 
 

 (8b) 

 

(9b) 

where 𝒖 = −𝒘 , 𝒗 = −𝒛 , and 𝒑  consists of elements whose 
value are negative of some elements of 𝒙 and 𝒚, depending on 

the location of negative elements in 𝑨 and 𝑨𝑻. The result of Eqn. 
(8b) is only slightly different from the last vector in Eqn. (8a) 
on the 3rd and 4th elements. Since the matrix-vector product in 
memristor crossbar is represented as voltage, we can first 
calculate (8b) by performing matrix-vector multiplication using 
the updated memristor crossbar 𝑴, and then acquire the last 
vector in Eqn. (8a), using a simple dividing-by-2 procedure on 
corresponding elements. 𝒓 can be updated accordingly. 
 Our proposed memristor crossbar-based linear program 
solver is summarized as follows: 

Algorithm 1: Memristor Crossbar-based Linear Program Solver 

Input: Matrix A, vectors b, c, constant 𝜀𝑏, 𝜀𝑐, 𝜇, 𝜃 

Output: Vector x, y, w, z 

Initialize x, y, w, z with an arbitrary guess. 

While 𝑨𝒙 + 𝒘 − 𝒃 ≻ 𝜀𝑏 or 𝑨𝑻𝒚 − 𝒛 − 𝒄 ≻ 𝜀𝑐: 

Update matrix M in (7b) in memristor crossbar and vectors p, u, v 

in (8b) based on A, x, y, w, z. 

      Derive r based on (8a) and (8b) using memristor crossbar.  

      Solve 𝑴Δ𝒔 = 𝒓 using memristor crossbar. 

      Update 𝒔 = 𝒔 + 𝜃Δ𝒔. 

End 

Return 𝒙, 𝒚,𝒘, 𝒛. 

 

C. Writing Coefficients in Matrices  

The analog computation requires that memristor arrays (e.g., 

matrix 𝑴 in (7b)) be programmed prior to execution (solving 

linear program), and be updated in each iteration during 

execution. Modifying the resistance of a memristor device can 

be achieved by applying 𝑉𝑑𝑑 or −𝑉𝑑𝑑 (satisfying |𝑉𝑑𝑑| > |𝑉𝑡ℎ|) 
to two terminals of the memristor device [1][2][9]. In a 

memristor crossbar, the voltage difference 𝑉𝑑𝑑 is applied on the 

corresponding WL and BL that are connected to the target 

memristor device, whereas other WLs and BLs are biased by 

𝑉𝑑𝑑/2, which will have negligible effect on other memristor 

devices since |𝑉𝑑𝑑/2| < |𝑉𝑡ℎ|  [2]   Programming a memristor 

device to a specific resistance is achieved by adjusting the 

amplitude and width of the write pulse (or the total number of 

write pulse spikes) [2][9]. The writing circuits of memristor 

crossbars and controlling circuits will be CMOS based.  

D. Supporting Large-Scale Matrices 

A memristor crossbar has limitation on its size due to 

manufacturing and performance considerations [13], which can 

potentially limit its scalability for large-scale and high-data rate 

applications. In order to overcome this shortcoming, motivated 

by [12], we adopt analog network-on-chip (NoC) 

communication structures that effectively coordinate multiple 

memristor crossbars for supporting large-scale applications. 

Data transfers within this NoC structure maintain analog form 

and are managed by the NoC arbiters. 
Arbiter Arbiter

Arbiter Arbiter

 
                      (a)                                           (b) 

Fig. 2. NOC Structure for Large Scale Computation 

Fig. 2 (a) and (b) illustrate two potential analog NoC 

structures for multiple memristor crossbars. Fig. 2 (a) is a 

hierarchical structure of memristor crossbars, in which four 

crossbar arrays are grouped and controlled by one arbiter, and 

four such groups again form a higher-level group controlled by 

a higher-level arbiter. Fig. 2 (b) is a mesh network-based 

structure of memristor crossbars, which resembles the mesh 

network-based NoC structure in multi-core systems [13]. 

Analog buffer and switches [10][11] will be utilized (in the 

arbiters) for the proper operation of this structure. The controller 

of NoC structure will be implemented in CMOS circuits. The 

NoC structure in Fig. 2 (a) will adopt a centralized controller 

whereas that in Fig. 2 (b) could employ a distributed controller 

similar to mesh network-based NoC in multi-core systems [13]. 

In addition to the NoC structure, we also present an 

memristor-based linear program solver with enhanced 

scalability. They key motivation is to use an iterative process to 

reduce the required size of matrix 𝑴 in (7b), thereby improving 

scalability. More specifically, we treat Eqns. (4a)- (4b) as two 

systems of linear equations: 

[
𝑨 𝟎
𝟎 𝑨𝑻] [

Δ𝒙
Δ𝒚

] = [
𝒃 − 𝑨𝒙 − 𝒘
𝒄 − 𝑨𝑻𝒚 + 𝒛

]  (9a) 

[
𝑿 𝟎
𝟎 𝒀

] [
𝜟𝒛
𝜟𝒘

] = [
𝝁 − 𝑿𝒁𝒆

𝝁 − 𝒀𝑾𝒆
]  (9b) 

Unlike (7a) which solves all step direction vectors (i.e., Δ𝒙, 

Δ𝒚 , Δ𝒘 , Δ𝒛 ) as one linear system, the proposed iterative 

algorithm for large-scale operations updates the step directions 

in an iterative approach. While updating step directions for 

vector 𝒙, 𝒚, vectors 𝒘, 𝒛 are assumed to be fixed so that we only 

need to solve Eqn. (9a) using memristor crossbar. After 

updating 𝒙, 𝒚, we derive the step directions for vectors 𝒘, 𝒛 by 

solving (9b) using memristor crossbar.  

320



However, the coefficient matrix in (9a) is singular if A is not 

a square matrix. That is, Eqn. (9a) has no solution. In order to 

make (9a) solvable, part of the zero elements needs to be 

transformed to nonzero elements while causing limited impact 

to solution. Hence, following change is made to (9a). 

[
𝑨 𝑹𝑼

𝑹𝑳 𝑨𝑻] [
Δ𝒙
Δ𝒚

] = [
𝒃 − 𝑨𝒙 − 𝒘
𝒄 − 𝑨𝑻𝒚 + 𝒛

]  (9c) 

where 𝑹𝑼 is a matrix whose upper right 𝑚 by 𝑚 sub-matrix is 

zero matrix and 𝑹𝑳  is a matrix whose lower left 𝑛 by 𝑛 sub-

matrix is zero matrix 

If 𝑛 > 𝑚, 𝑹𝑳 is used to replace lower left zero elements, and 

if 𝑚 > 𝑛 , 𝑹𝑼  is used to replace upper right zero elements. 

Random positive numbers that are less than a threshold value 

are used to construct 𝑹𝑳 and 𝑹𝑼. Process alike Eqn. (6) is still 

needed after this step, therefore, Eqn. (9a) is transformed into 

[

𝑨′ 𝑹𝑼 𝟎 or 𝑨′′

𝑹𝑳 𝑨𝑻′ 𝟎 or 𝑨𝑻′′

𝟎 or 𝑨𝑰 𝟎 or 𝑨𝑻𝑰 𝟎 or 𝑰

] [

Δ𝒙
Δ𝒚
Δ𝒑

] = [
𝒃 − 𝑨𝒙 − 𝒘
𝒄 − 𝑨𝑻𝒚 + 𝒛

𝟎
]  (9d) 

On the other hand, the right hand-side vectors of Eqns. (9a) 

and (9b) can be calculated as: 

[
𝒃 − 𝑨𝒙 − 𝒘
𝒄 − 𝑨𝑻𝒚 + 𝒛

𝟎

] = [
𝒃 − 𝒘
𝒄 + 𝒛

𝟎
] − [

𝑨′ 𝟎 𝟎 or 𝑨′′
𝟎 𝑨𝑻′ 𝟎 or 𝑨𝑻′′

𝟎 or 𝑨𝑰 𝟎 or 𝑨𝑻𝑰 𝟎 or 𝑰

] [

𝒙
𝒚
𝒑
]  (10a) 

[
𝝁 − 𝑿𝒁𝒆

𝝁 − 𝒀𝑾𝒆
] = [

𝝁
𝝁] − [

𝑿 𝟎
𝟎 𝒀

] [
𝒛
𝒘

] (10b) 

Details of the proposed iterative linear program solver for 

enhancing scalability are described as below: 

Algorithm 2: Memristor Crossbar-based Linear Program Solver 

for Large-Scale Operations 

Input: Matrix A, vectors b, c, constant 𝜀𝑏, 𝜀𝑐, 𝜇, 𝜃 

Output: Vector x, y, w, z 

Initialize x, y, w, z with an arbitrary guess. 

While 𝑨𝒙 + 𝒘 − 𝒃 ≻ 𝜀𝑏 or 𝑨𝑻𝒚 − 𝒛 − 𝒄 ≻ 𝜀𝑐: 

Update coefficient matrix 𝑴𝟏 in (9d) and vector p in (10a) based 

on A, x, y . 

Calculate vector 𝒓𝟏 based on 𝑴𝟏 and 𝒔𝟏 in (10a) using memristor 

crossbar, where 𝒔𝟏 = [𝒙, 𝒚, 𝒑]𝑻. 

Solve 𝑴𝟏Δ𝒔1 = 𝒓𝟏 using memristor crossbar. 

Update 𝒔𝟏 = 𝒔𝟏 + 𝜃Δ𝒔𝟏      

Update coefficient matrix 𝑴𝟐 in (9b). based on x, y                     

Calculate vector 𝒓𝟐 based on 𝑴𝟐 and 𝒔𝟐 in (10b) using memristor 

crossbar, where 𝒔𝟐 = [𝒘, 𝒛]𝑻. 

Solve 𝑴𝟐Δ𝒔2 = 𝒓𝟐 using memristor crossbar. 

Update 𝒘, 𝒛 with 𝒔𝟐 = 𝒔𝟐 + 𝜃Δ𝒔𝟐. 

End 

Return 𝒙, 𝒚,𝒘, 𝒛. 

E. Algorithms Complexity Comparisons 

Given the fact that iteration-exiting conditions are same in 

software-based PDIP algorithm and the proposed memristor 

crossbar-based solver, the difference in iteration times is 

minimal. For each iteration step in software-based PDIP 

algorithm, a set of 2(𝑛 + 𝑚)  equations needs to be solved. 

Solving such linear system could require 𝑂(𝑁3)  time 

complexity with direct method such as Gaussian Elimination 

method or LU-Decomposition, and 𝑂(𝑁2) for each iteration by 

using iterative method such as Gauss-Seidel method (𝑁 = 𝑛 +
𝑚). For the proposed solver, complexity for updating X, Y, W, 

Z in matrix 𝑴 is 𝑂(𝑁) (please note that matrices 𝑨 and 𝑨𝑻 do 

not need updating), and solving linear system in Eqn. (7a) only 

costs 𝑂(1)  time complexity. That is, for each iteration the 

complexity for memristor crossbar-based linear program solver 

is 𝑂(𝑁), while software-based PDIP algorithm could cost at 

least pseudo-𝑂(𝑁2). As for memristor crossbar-based linear 

program solver for large-scale applications, complexity for 

updating X, Y in matrix Eqn. (9b) is 𝑂(𝑁), and complexities for 

solving (9a) and (9b) on memristor crossbar are both 𝑂(1) . 

Hence, the time complexity for memristor crossbar-based linear 

program solver for large-scale applications is also 𝑂(𝑁)  for 

each iteration step, and the overall complexity is pseudo-𝑂(𝑁). 

Note that the above analysis only applies for the iterative 

solution of linear programs. On the other hand, the initialization 

time complexity is 𝑂(𝑁2) for dense matrices, and will be lower 

for sparse matrices that are common in linear programs. 

IV. EXPERIMENTS AND RESULTS 

Our experiments based on memristor model from [22] show 
significant improvement in speed and energy efficiency of 
memristor crossbar based implementation. The estimated delay 
for solving linear programs ranges from 36μs if the number of 
variables is 100 to 490μs if the number of variables is 1024. This 
estimation is based on (i) actual simulation results indicating that 
it generally takes 9–12 iterations for convergence, and (ii) the 
amount of coefficients updating in each iteration is 4N where N 
is the number of optimization variables. A maximum of 7,960X 
estimated improvement in speed is achieved compared with 
PDIP algorithm implemented in MATLAB executed on an Intel 
I7 server (when the number of variables is 1024). This significant 
improvement is because of reduction in complexity and speedup 
due to dedicated hardware implementation. The maximum 
amount of energy reduction is 6.7 × 105X in this case, which is 
even more significant than the speedup because of the low power 
consumption of memristor crossbar. 

Under ideal condition, matrix operations on memristor 
crossbar-based design should be accurate given Kirchhoff’s law 
[19]. However, due to process variations, the actual memristance 
matrix of a memristor crossbar may be different from the 
theoretical values. Because the impact of process variations is 
too complex to be expressed by a mathematical closed-form 
solution, we model it as a uniform distribution with a maximum 
range 𝑑𝑚𝑎𝑥.   

 
                              (a)                                                            (b) 

Fig. 3. (a) Accuracy simulation results of Memristor Crossbar-based Linear 

Program Solver for up to 5% process variations of each cell. (b) Accuracy 
simulation results of Memristor Crossbar-based Linear Program Solver for 

Large-Scale Operations for up to 5% process variations of each cell. 

Both two algorithms (discussed in Section 3.B and 3.D) are 
given 1000 sets of tests with two different maximum ranges of 
process variations (5%, 10%). Each set of tests contains 100 
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randomly generated tests under the same matrix size and range 
of process variations. As for matrix size (𝑨 ∈ ℝ𝒎×𝒏, m = number 
of constraints, n = number of variables), the number of 
constraints is three times of the number of variables. The number 
of constraints varies from 4 to 1024. Results obtained from 

memristor crossbar-based solver are compared with 𝒄𝑻𝒙 
obtained from software-based PDIP algorithm, and inaccuracy is 
measured by difference in percentage. Above experiments are 
modeled and simulated in Matlab using memristor crossbar 
model [9]. Experiments results are shown in Fig. 3 and Fig. 4.  

For 𝑑𝑚𝑎𝑥 = 5%, the inaccuracy range is 0.2% to 5.3% for 
Memristor Crossbar-based Linear Program Solver and 0.01% to 
0.2% for Memristor Crossbar-based Linear Program Solver for 
Large Scale Operation. For 𝑑𝑚𝑎𝑥 = 10%, corresponding 
inaccuracy ranges are 0.7% to 7.8% and 0.01% to 0.4%. As 
shown in Fig. 3 and Fig. 4, inaccuracy decreases with increasing 
of numbers of constraints. Both implementations have shown 
reliable and accurate performance.  

 
                              (a)                                                         (b) 

Fig. 4. (a) Accuracy simulation results of Memristor Crossbar-based Linear 

Program Solver for up to 10% process variations of each cell. (b) Accuracy 
simulation results of Memristor Crossbar-based Linear Program Solver for 

Large Scale Operations for up to 10% process variations of each cell. 

It can be observed that, inaccuracy drops significantly from 
the case where the number of constraints is less than 100 to the 
case where the number of constraints is less than 200. We believe 
that some singular matrices induced by process variations in the 
intermediate steps may cause such steep drop. While 
memristance is altered under the impact of process variation, its 
mapping matrix might be changed from a non-singular matrix to 
closer to a singular matrix (with determinant equal to 0), which 
could lead to zero solution or less accurate solution for the linear 
system. Since the coefficient size is relatively small, it could be 
more easily affected by some elements change and turn into a 
singular matrix. 

Apart from singular matrix, matrix whose determinant is 
close to zero could be more vulnerable to process variations. 
Recall that each unknown in the solution of a linear system can 
be formulated as the division between determinants of a sub-
matrix of coefficient matrix and coefficient matrix according to 
the Crammer’s rule; the solution is inversely proportional to the 
determinant of coefficient matrix. Hence, matrices whose 
determinant values are close to zero could lead to massive 
change in values of solution under the impact of process 
variation. The accuracy for above two circumstances could be 
easily affected by process variation.  

However, based on our randomly generated experiments, the 
above two circumstances are not common, and are very rare for 
large-scale matrices. With an average of 2% inaccuracy for 5% 
process variations and 4% for 10% process variations and an 
average of less than 0.005% inaccuracy for large-scale 
operations, memristor crossbar-based linear program solver 
using PDIP algorithm can provide very high accuracy with high 
energy/power efficiency.  

V. CONCLUSION 

This paper described the design of memristor crossbar-based 

linear program solver using primal-dual interior point 

algorithm. Two implementations using memristor crossbar have 

been presented for effectively trading-off between hardware 

complexity and computing speed. We also presented extension 

schemes to large-scale applications. Experimental results 

demonstrate reliable performance with high accuracy. 
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