
A Low-Computation-Complexity, Energy-Efficient, and High-

Performance Linear Program Solver Using Memristor Crossbars

Ruizhe Cai, Ao Ren, Yanzhi Wang,

Sucheta Soundarajan, Qinru Qiu

Electrical Engineering and Computer

Science

Syracuse University

Syracuse, NY, USA

{rcai100, aren, ywang393, susounda,

qiqiu}@syr.edu

Bo Yuan

Electrical Engineering

City University of New York

New York, NY, USA

byuan@ccny.cuny.edu

Paul Bogdan

Electrical Engineering

University of Southern California

Los Angeles, CA, USA

pbogdan@usc.edu

Abstract—Linear programming is required in a wide variety of

application including routing, scheduling, and various

optimization problems. The primal-dual interior point (PDIP)

method is state-of-the-art algorithm for solving linear programs,

and can be decomposed to matrix-vector multiplication and solving

systems of linear equations, both of which can be conducted by the

emerging memristor crossbar technique in O(1) time complexity in

the analog domain. This work is the first to apply memristor

crossbar for linear program solving based on the PDIP method,

which has been reformulated for memristor crossbars to compute

in the analog domain. The proposed linear program solver can

overcome limitations of memristor crossbars such as supporting

only non-negative coefficients, and has been extended for higher

scalability. The proposed solver is iterative and achieves O(N)

computation complexity in each iteration. Experimental results

demonstrate that reliable performance with high accuracy can be

achieved under process variations.

I. INTRODUCTION

Linear programs are common in a wide variety of
applications, including routing, scheduling, and other
optimization problems. Interior point methods are a popular class
of algorithms for solving linear programs. Unlike the well-
known simplex algorithm, which traverses vertices of the
feasible region to find the optimal solution, interior point
methods trace a path through the interior of the feasible region.
The primal-dual interior point (PDIP) method uses the gap
between the current solutions of the primal linear program and
its dual in order to determine the path to follow within the
feasible region. In each iteration, the algorithm involves
calculating matrix-vector product and solving systems of linear
equations. The emerging memristor crossbar technology can be
potentially utilized to achieve significant speed-ups due to its
significant benefits in matrix operations.

Memristor was predicted as the fourth circuit element nearly
half a century ago [17]. It was not physically created until 2008
by HP lab [18]. Non-volatility, low power consumption, and
excellent scalability are some of its promising features. More
importantly, its capability to record historical resistance makes it
unique, and has resulted in heightened interests over the last
several years. A crossbar structure of memristor devices (i.e. a
memristor crossbar) can be utilized to perform matrix-vector
multiplication and solve systems of linear equations in the analog
domain in O(1) time complexity [7][8][9]. Such advantages in
matrix operations make it ideal candidate for implementing the
state-of-the-art PDIP method for solving linear programs given
its high usage of matrix-vector multiplication and solving linear

systems. Moreover, the effect of process variations of memristor
devices can be significantly mitigated (as shown in experimental
results) by the inherent noise tolerance of the iterative PDIP
algorithm.

Although promising, multiple challenges need to be
overcome when applying memristor devices for linear program
solving. Since the memristor crossbar performs matrix
operations in the analog domain, we need to formulate the whole
PDIP algorithm using memristor crossbar in the analog domain
in order to avoid the significant overhead of D/A and A/D
conversions. Moreover, some limitations of memristor crossbars
(e.g., only non-negative matrix coefficients and square matrices
when solving a system of linear equations can be supported) need
to be properly addressed.

To the best of our knowledge, this paper is the first to provide
a comprehensive algorithm-hardware framework on memristor
crossbar for linear program solving. The PDIP method is
reformulated for memristor crossbar and analog computations.
The proposed solver can effectively deal with matrices
containing negative numbers, and has been extended for linear
program solving with higher scalability that can overcome size
limitations of the memristor crossbar structure. The proposed
solver achieves pseudo-O(N) computation complexity, i.e., O(N)
complexity in each iteration, which is a significant improvement
compared with the software-based PDIP method of O(N3).
Experimental results demonstrate that the performance of
proposed implementation is reliable with less than 4%
inaccuracy on average under 10% process variations. Based on
our estimation, the proposed solver could lead to 7960X
improvements in speed and 6.7 × 105 X reduction in energy
consumption.

II. BACKGROUND

A. Linear Program Solving Methods

The simplex method of Dantzig was the first efficient
algorithm for solving linear programming problems, and is still
popular today [21]. The simplex algorithm considers the feasible
region of the linear program (i.e., the space of points satisfying
all constraints), which is a polytope. The algorithm begins at one
vertex of the polytope, and moves from vertex to vertex in such
a way as to increase the value of the objective function. The
simplex algorithm is extremely efficient in practice, but has
exponential running time in the worst case [20].

Interior point methods for solving linear programs were
developed in response to this inefficiency. Unlike the simplex
algorithm, which moves from vertex to vertex of the feasible

978-1-5090-1367-8/16/$31.00 ©2016 IEEE 317

region, interior point methods traverse the interior of this region.
Karmarkar’s projective method was the first interior point
algorithm that was both polynomial time in the worst case as well
as fast in practice [20]. This method first begins at an interior
point within the feasible region. It next applies a projective
transformation so that the current interior point is the center of
the projective space, and then moves in the direction of steepest
descent. This is repeated until convergence.

The primal-dual interior point method uses the above
technique, but incorporates information from the dual of the
problem. Every linear program has a dual program, with the
property that when the primal linear program has an optimal
solution, the dual linear program also has the same optimal
solution, and these two solutions are equal. The primal-dual
interior point method exploits this property by simultaneously
solving both the primal linear program as well as its dual, and
steadily decreasing the duality gap (i.e., the difference between
the value of the current solution to the primal and the current
solution to the dual).

B. Memristor and Memristor Crossbar

Memristor was introduced by L.O. Chua as the fourth
element of circuit and was founded by HP labs in 2008 [17][18].
It remembers its most recent resistance, which can be altered by
excitation with energy greater than a threshold [3]-[6]. More
specifically, the state of a memristor will change when certain
voltage higher than the threshold voltage, i.e., |𝑉𝑚| > |𝑉𝑡ℎ|, is
applied at its two terminals for a small time period. Otherwise,
the memristor behaves like a resistor. Such memristive property
makes it an ideal candidate for non-volatile memory and matrix
computations [7][8].

BLjVI,1

VI

rs rs rs rs rs rs rs

VO

VI,2

VI,3

VI,i

VI,i+1

VI,N

VO,1 VO,2 VO,3 VO,j-1 VO,j VO,N-1 VO,N

WLi

Fig. 1. Structure of Memristor Crossbar

With its high degree of parallelism, the memristor crossbar
array is attractive for matrix computations (which can often be
performed with O(1) time complexity). A typical structure of an
N×N memristor crossbar is shown in Fig. 1, in which a
memristor is connected between each pair of horizontal word-
line (WL) and vertical bit-line (BL). This structure could provide
large number of signal connections within a small footprint. In
addition, it is capable of reprogramming each memristor to
different resistance states by properly applying biasing voltages
at its two terminals [1][2][9]. For multiplications, a vector of

input voltages 𝐕𝐈 is applied on WLs and the current through each

BL can be collected by measuring the voltage across resistor 𝑅𝑠
with conductance of 𝑔𝑠 . Assume that the memristor at the

connection between WL𝑖 and BL𝑗 has a conductance of 𝑔𝑖,𝑗 .

Then the output voltages are represented by 𝐕𝐎 = 𝐂 ∙ 𝐕𝐈, where

the connection matrix 𝐂 is constructed by a programmed

crossbar array, which transfers the input vector 𝐕𝐈 to the output

vector 𝐕𝐎. 𝐂 is determined by the conductance of memristors:

𝐂 = 𝑫 ∙ 𝑮𝑇 = 𝑑𝑖𝑎𝑔(𝑑1, … , 𝑑𝑁) ∙ [

𝑔1,1 … 𝑔1,𝑁

⋮ ⋱ ⋮
𝑔𝑁,1 … 𝑔𝑁,𝑁

]

𝑇

 (1)

where 𝑑𝑖 = 1/(𝑔𝑠 + ∑ 𝑔𝑘,𝑖)
𝑁
𝑘=1 .

 In reverse, the memristor crossbar structure can also be used
to solve a linear system of equations, by mapping the linear
equations to the memristor crossbar structure. A voltage vector
𝐕𝐎 is applied on each 𝑅𝑠 of BL, so the current flowing through

each BL can be approximated as 𝐼𝑜,𝑗 = 𝑔𝑠𝑉𝑜,𝑗 . On the other

hand, current 𝐼𝑜,𝑗 through BL𝑗 can also be calculated as 𝐼𝑜,𝑗 =

∑ 𝑉𝐼,𝑖𝑔𝑖,𝑗𝑗 . Hence, for each BL𝑗, equation
1

𝑔𝑠

∑ 𝑉𝐼,𝑖𝑔𝑖,𝑗 = 𝑉𝑜,𝑗𝑗 is

mapped. Therefore, the system of linear equations 𝐂 ∙ 𝐕𝐈 = 𝐕𝐎 is
mapped to the memristor crossbar structure, and solution 𝐕𝐈 can
be determined by measuring voltages on the WLs. Please note
that, elements of matrix 𝐂 should be non-negative in order to be
mapped to memristor crossbar, because resistance cannot reach
negative values. It is worth mentioning that the matrix
calculation process with the memristor crossbar just has a
negligible effect on memristance of each memristor, because the
time period that current go through a memristor is short enough
during the calculation process.

It is proved in [9] that a fast and simple approximation 𝑔𝑖,𝑗 =

𝑐𝑖,𝑗 ∙ 𝑔𝑚𝑎𝑥 can be adopted for mapping above matrix onto the

memristor crossbar (𝑔𝑚𝑎𝑥 is the largest value in 𝑮). Therefore

for matrix-vector multiplication 𝐀𝑥 = 𝑏 , 𝐀 = 𝑔𝑚𝑎𝑥 ∙ 𝐂 and 𝑏 =
 𝑔𝑠𝑽𝑶; for the solution of linear system 𝐀𝑥 = 𝑏, 𝐀 = 𝑔𝑚𝑎𝑥 ∙ 𝐂

and 𝑥 =
𝑔𝑠

𝑔𝑚𝑎𝑥
𝑽𝑰.

III. MEMRISTOR CROSSBAR-BASED LINERA PROGRAM SOLVER

We present a memristor crossbar based linear program

solver based on the PDIP algorithm, which overcomes

hardware limitations of memristor crossbar while taking its

advantages on matrix operations. The presented solver could

handle the vastly used matrix operations in PDIP algorithm

efficiently with significantly reduced computation complexity

(to pseudo-O(N)), power consumption, and latency. Moreover,

the proposed solver can deal with matrices containing negative

numbers that cannot be directly mapped on to memristor

crossbars. In addition, we introduce an extension for linear

program solving with higher scalability that can overcome size

limitations of the memristor crossbar structure.

This section is organized in five parts: The PDIP algorithm

is discussed in part A; The proposed memristor crossbar-based

linear program solver is introduced in part B; Part C discusses

writing coefficients in memristor crossbar, and the proposed

solutions for representing and computing large-scale matrices

are introduced in part D. Part E investigates computation

complexity of proposed memristor crossbar-based solvers.

A. The Primal-Dual Interior Point (PDIP) Method for Solving

Linear Programs

Linear programs or linear programming problems [15] are

problems that can be expressed as:

 Maximize 𝒄𝑻𝒙 subject to:

 𝑨𝒙 ≼ 𝒃 (𝑨 ∈ ℝ𝒎×𝒏) 𝒙 ≽ 𝟎

where 𝑨𝒙 ≼ 𝒃 means that every element in vector 𝑨𝒙 is smaller

than or equal to corresponding element in vector 𝒃. Every linear

program can be converted into a symmetrical dual problem:

318

 Minimize 𝒃𝑻𝒚 subject to:

 𝑨𝑻𝒚 ≽ 𝒄 𝒚 ≽ 𝟎.

By Introducing two additional variables, inequality

constraints can be transformed into equality constraints. The

above problem can be reformulated as follows [16]:

Maximize 𝒄𝑻𝒙 subject to:

𝑨𝒙 + 𝒘 = 𝒃 𝒙, 𝒘 ≽ 𝟎 (2a)

and its dual:

Minimize 𝒃𝑻𝒚 subject to:

𝑨𝑻𝒚 − 𝒛 = 𝒄 𝒚, 𝒛 ≽ 𝟎 (2b)

with complementary conditions:

∀𝑖 ∈ ℕ ∩ [1, 𝑛] ∧ ∀𝑗 ∈ ℕ ∩ [1,𝑚]: 𝑥𝑖𝑧𝑖 = 0, 𝑦𝑗𝑤𝑗 = 0

which can be represented using the following matrix notations:

𝑿𝒁𝒆 = 𝟎, 𝒀𝑾𝒆 = 𝟎 (2c)

In the above equation, uppercase notations are utilized to denote

diagonal matrices, e.g.,

𝑿 = 𝑑𝑖𝑎𝑔(𝑥1, … , 𝑥𝑛),

where 𝒙 = [𝑥1, … , 𝑥𝑛]𝑻 , and the subscript e stands for the

reverse operation, that is 𝑿𝒆 = [𝑿𝟏𝟏, … , 𝑿𝒊𝒊, … , 𝑿𝒏𝒏]
𝑻.

Due to nonlinearity characteristics in (2c), the above problem

is difficult to solve directly. The interior point algorithm [14][16]

is introduced to solve this problem effectively. In this algorithm,

x, y, w, z are initialized as arbitrary vectors and updated

iteratively until Eqns. (2a) – (2c) are (sufficiently) satisfied. In

each iteration, a set of vectors Δ𝒙 , Δ𝒚 , Δ𝒘 , Δ𝒛 , which are

referred to as step direction vectors, are derived from solving the

following system of equations:

𝑨(𝒙 + Δ𝒙) + (𝒘 + Δ𝒘) = 𝒃 (3a)

𝑨𝑻(𝒚 + 𝜟𝒚) − (𝒛 + 𝜟𝒛) = 𝒄 (3b)

(𝑿 + 𝜟𝑿)(𝒁 + 𝜟𝒁)𝒆 = 𝝁 (3c)

(𝒀 + 𝜟𝒀)(𝑾 + 𝜟𝑾)𝒆 = 𝝁 (3d)

where 𝝁 is a small value vector. Since x, y, w, z are nonnegative

vectors, the complementary conditions in (2c) are replaced with

𝝁-complementary conditions (3c) and (3d). Ignoring the second-

order elements in (3c) and (3d), the above system of equations

can be represented as a system of linear equations of Δ𝒙, Δ𝒚,

Δ𝒘, Δ𝒛, denoted by:

𝑨Δ𝒙 + Δ𝒘 = 𝒃 − 𝑨𝒙 − 𝒘 (4a)

𝑨𝑻Δ𝒚 − 𝜟𝒛 = 𝒄 − 𝑨𝑻𝒚 + 𝒛 (4b)

𝒁𝜟𝒙 + 𝑿Δ𝒛 = 𝝁 − 𝑿𝒁𝒆 (4c)

𝑾𝜟𝒚 + 𝒀Δ𝒘 = 𝝁 − 𝒀𝑾𝒆 (4d)

The unknown vectors Δ𝒙, Δ𝒚, Δ𝒘, Δ𝒛 can be calculated from

solving the system of linear equations (4a)-(4d) and applied to

update x, y, w, z. Above steps are repeated until 𝑨𝒙 + 𝒘 − 𝒃 and

𝑨𝑻𝒚 − 𝒛 − 𝒄 are small enough.

B. Memristor Crossbar-based Linear Program Solver Using

PDIP Algorithm

The memristor crossbar array structure has high potential for

implementing PDIP algorithms due to its advantages in matrix

operations. However, the memristor crossbar array structure has

some limitations, which necessitate the adjustment of PDIP

algorithm for effective memristor crossbar based

implementations. Since the matrix elements are represented as

non-negative memristance values in the memristor crossbar, a

novel mechanism is required for representing negative matrix

coefficients. In addition, the linear system to be solved should

have a square coefficients matrix. Next, we propose a memristor

crossbar based linear program solver using PDIP algorithm

through effectively resolving the abovementioned issues.

For facilitating memristor-based implementations, linear

equations in (4a) – (4b) can be rewritten as a linear system with

2(n+m) variables, as shown in (5):

[

𝑨 𝟎 𝑰 𝟎
𝟎 𝑨𝑻 𝟎 −𝑰
𝒁 𝟎 𝟎 𝑿
𝟎 𝑾 𝒀 𝟎

] [

Δ𝒙
Δ𝒚
Δ𝒘
Δ𝒛

] = [

𝒃 − 𝑨𝒙 − 𝒘
𝒄 − 𝑨𝑻𝒚 + 𝒛

𝝁 − 𝑿𝒁𝒆

𝝁 − 𝒀𝑾𝒆

] (5)

where 𝑰 represents the identity matrix with diagonal values equal

to 1.

In order to make the matrix representable in memristor

crossbar structure, new variables have to be introduced to

eliminate negative elements. Consider a linear system 𝑨𝒙 = 𝒃,

in which 𝑨𝒊,𝒋 is negative element. It can be transformed into a

nonnegative matrix by introducing a compensation variable

𝑥𝑐 = −𝑥𝑗 . Hence, the above linear system is equivalent to:

[

𝑨𝟏,𝟏 … 𝑨𝟏,𝒋 … 𝑨𝟏,𝒏 𝟎

⋮ … … … ⋮ 𝟎
𝑨𝒊,𝟏 … 𝟎 … 𝑨𝒊,𝒏 −𝑨𝒊,𝒋

⋮ … … … ⋮ 𝟎
𝑨𝒏,𝟏 … 𝑨𝒏,𝒋 … 𝑨𝒏,𝒏 𝟎

𝟎 𝟎 𝟏 𝟎 𝟎 𝟏]

[

𝒙𝟏

⋮
𝒙𝒋

⋮
𝒙𝒏

𝒙𝒄]

=

[

𝒃𝟏

⋮
𝒃𝒋

⋮
𝒃𝒏

𝟎]

 (6)

As shown in Eqn. (5), the matrix on left hand-side consists of

a sub-matrix – 𝑰 introduced by Δ𝒛 in Eqn. (3b). A new variable

vector, Δ𝒗 = −Δ𝒛 , has to be introduced. Besides, a

compensation variable vector Δ𝒖 = −Δ𝒘 is required for

maintaining a square matrix. In addition, 𝑨 and 𝑨𝑻 are the only

matrices that may contain negative elements. Processes like Eqn.

(6) are needed to eliminate all negative elements in 𝑨 and 𝑨𝑻.

Therefore we have:

[

𝑨′ 𝟎 𝑰 𝟎 𝟎 𝟎 𝟎 or 𝑨′′

𝟎 𝑨𝑻′ 𝟎 𝟎 𝟎 𝑰 𝟎 or 𝑨𝑻′′

𝒁 𝟎 𝟎 𝑿 𝟎 𝟎 𝟎
𝟎 𝑾 𝒀 𝟎 𝟎 𝟎 𝟎
𝟎 𝟎 𝑰 𝟎 𝑰 𝟎 𝟎
𝟎 𝟎 𝟎 𝑰 𝟎 𝑰 𝟎

𝟎 or 𝑨𝑰 𝟎 or 𝑨𝑻𝑰 𝟎 𝟎 𝟎 𝟎 𝟎 or 𝑰]

[

Δ𝒙
Δ𝒚
Δ𝒘
Δ𝒛
Δ𝒖
Δ𝒗
Δ𝒑]

=

[

𝒃 − 𝑨𝒙 − 𝒘
𝒄 − 𝑨𝑻𝒚 + 𝒛

𝝁 − 𝑿𝒁𝒆

𝝁 − 𝒀𝑾𝒆

𝟎
𝟎
𝟎]

 (7a)

where Δ𝒑 comprises Δ𝑝𝑖 = {
−Δ𝑥𝑗 if 𝐴𝛼,𝑗 < 0 for some 𝛼

−Δ𝑦𝑘 if 𝐴𝛽,𝑘
𝑇 < 0 for some 𝛽

. 𝑨′

and 𝑨𝑻′ are matrices that change the negative elements in 𝑨 and

𝑨𝑻 to zero. 𝑨′′ and 𝑨𝑻′′ are matrices whose elements are the

absolute values of negative elements in 𝑨 and 𝑨𝑻 . 𝑨𝑰 and 𝑨𝑻𝑰
are matrices consisting of 1 and 0's. Locations of 1's depend on

the locations of negative elements in 𝑨 and 𝑨𝑻 (please refer to
Eqn. (6) as an example).
 The above equation can be denoted as:

𝑴Δ𝒔 = 𝒓 (7b)

where 𝑴 can be implemented and variable vector Δ𝒔 can be
derived using memristor crossbar.

In the PDIP algorithm, once Δ𝒙 , Δ𝒚 , Δ𝒘 , Δ𝒛 (all in the
derived vector Δ𝒔) are derived, we will update x, y, w, z, which
can be performed using summing amplifiers. We will further

319

update the left-hand side matrix 𝑴 and the right hand-side
vector 𝒓 of Eqn. (7b). Updating matrix 𝑴 is relatively
straightforward since we only need to update 𝑿, 𝒀, 𝒁, and 𝑾 in
𝑴, using the memristor writing technology as shall be discussed
in part C. On the other hand, 𝒓 can be viewed as the difference
of two vectors:

𝒓 =

[

𝒃 − 𝑨𝒙 − 𝒘
𝒄 − 𝑨𝑻𝒚 + 𝒛

𝝁 − 𝑿𝒁𝒆

𝝁 − 𝒀𝑾𝒆

𝟎
𝟎
𝟎]

=

[

𝒃
𝒄
𝝁
𝝁
𝟎
𝟎
𝟎]

−

[

𝑨𝒙 + 𝒘
𝑨𝑻𝒚 − 𝒛

𝑿𝒁𝒆

𝒀𝑾𝒆

𝟎
𝟎
𝟎]

 (8a)

The subtraction could be implemented using summing
amplifiers [3]. Next, we will discuss the calculation of the last
vector in Eqn. (8a). Note that

𝑴

[

𝒙
𝒚
𝒘
𝒛
𝒖
𝒗
𝒑]

=

[

𝑨′ 𝟎 𝑰 𝟎 𝟎 𝟎 𝟎 or 𝑨′′

𝟎 𝑨𝑻′ 𝟎 𝟎 𝟎 𝑰 𝟎 or 𝑨𝑻′′

𝒁 𝟎 𝟎 𝑿 𝟎 𝟎 𝟎
𝟎 𝑾 𝒀 𝟎 𝟎 𝟎 𝟎
𝟎 𝟎 𝑰 𝟎 𝑰 𝟎 𝟎
𝟎 𝟎 𝟎 𝑰 𝟎 𝑰 𝟎

𝟎 or 𝑨𝑰 𝟎 or 𝑨𝑻𝑰 𝟎 𝟎 𝟎 𝟎 𝟎 or 𝑰]

[

𝒙
𝒚
𝒘
𝒛
𝒖
𝒗
𝒑]

=

[

𝑨𝒙 + 𝒘
𝑨𝑻𝒚 − 𝒛
𝟐𝑿𝒁𝒆

𝟐𝒀𝑾𝒆

𝟎
𝟎
𝟎]

 (8b)

(9b)

where 𝒖 = −𝒘 , 𝒗 = −𝒛 , and 𝒑 consists of elements whose
value are negative of some elements of 𝒙 and 𝒚, depending on

the location of negative elements in 𝑨 and 𝑨𝑻. The result of Eqn.
(8b) is only slightly different from the last vector in Eqn. (8a)
on the 3rd and 4th elements. Since the matrix-vector product in
memristor crossbar is represented as voltage, we can first
calculate (8b) by performing matrix-vector multiplication using
the updated memristor crossbar 𝑴, and then acquire the last
vector in Eqn. (8a), using a simple dividing-by-2 procedure on
corresponding elements. 𝒓 can be updated accordingly.
 Our proposed memristor crossbar-based linear program
solver is summarized as follows:

Algorithm 1: Memristor Crossbar-based Linear Program Solver

Input: Matrix A, vectors b, c, constant 𝜀𝑏, 𝜀𝑐, 𝜇, 𝜃

Output: Vector x, y, w, z

Initialize x, y, w, z with an arbitrary guess.

While 𝑨𝒙 + 𝒘 − 𝒃 ≻ 𝜀𝑏 or 𝑨𝑻𝒚 − 𝒛 − 𝒄 ≻ 𝜀𝑐:

Update matrix M in (7b) in memristor crossbar and vectors p, u, v

in (8b) based on A, x, y, w, z.

 Derive r based on (8a) and (8b) using memristor crossbar.

 Solve 𝑴Δ𝒔 = 𝒓 using memristor crossbar.

 Update 𝒔 = 𝒔 + 𝜃Δ𝒔.

End

Return 𝒙, 𝒚,𝒘, 𝒛.

C. Writing Coefficients in Matrices

The analog computation requires that memristor arrays (e.g.,

matrix 𝑴 in (7b)) be programmed prior to execution (solving

linear program), and be updated in each iteration during

execution. Modifying the resistance of a memristor device can

be achieved by applying 𝑉𝑑𝑑 or −𝑉𝑑𝑑 (satisfying |𝑉𝑑𝑑| > |𝑉𝑡ℎ|)
to two terminals of the memristor device [1][2][9]. In a

memristor crossbar, the voltage difference 𝑉𝑑𝑑 is applied on the

corresponding WL and BL that are connected to the target

memristor device, whereas other WLs and BLs are biased by

𝑉𝑑𝑑/2, which will have negligible effect on other memristor

devices since |𝑉𝑑𝑑/2| < |𝑉𝑡ℎ| [2] Programming a memristor

device to a specific resistance is achieved by adjusting the

amplitude and width of the write pulse (or the total number of

write pulse spikes) [2][9]. The writing circuits of memristor

crossbars and controlling circuits will be CMOS based.

D. Supporting Large-Scale Matrices

A memristor crossbar has limitation on its size due to

manufacturing and performance considerations [13], which can

potentially limit its scalability for large-scale and high-data rate

applications. In order to overcome this shortcoming, motivated

by [12], we adopt analog network-on-chip (NoC)

communication structures that effectively coordinate multiple

memristor crossbars for supporting large-scale applications.

Data transfers within this NoC structure maintain analog form

and are managed by the NoC arbiters.
Arbiter Arbiter

Arbiter Arbiter

 (a) (b)

Fig. 2. NOC Structure for Large Scale Computation

Fig. 2 (a) and (b) illustrate two potential analog NoC

structures for multiple memristor crossbars. Fig. 2 (a) is a

hierarchical structure of memristor crossbars, in which four

crossbar arrays are grouped and controlled by one arbiter, and

four such groups again form a higher-level group controlled by

a higher-level arbiter. Fig. 2 (b) is a mesh network-based

structure of memristor crossbars, which resembles the mesh

network-based NoC structure in multi-core systems [13].

Analog buffer and switches [10][11] will be utilized (in the

arbiters) for the proper operation of this structure. The controller

of NoC structure will be implemented in CMOS circuits. The

NoC structure in Fig. 2 (a) will adopt a centralized controller

whereas that in Fig. 2 (b) could employ a distributed controller

similar to mesh network-based NoC in multi-core systems [13].

In addition to the NoC structure, we also present an

memristor-based linear program solver with enhanced

scalability. They key motivation is to use an iterative process to

reduce the required size of matrix 𝑴 in (7b), thereby improving

scalability. More specifically, we treat Eqns. (4a)- (4b) as two

systems of linear equations:

[
𝑨 𝟎
𝟎 𝑨𝑻] [

Δ𝒙
Δ𝒚

] = [
𝒃 − 𝑨𝒙 − 𝒘
𝒄 − 𝑨𝑻𝒚 + 𝒛

] (9a)

[
𝑿 𝟎
𝟎 𝒀

] [
𝜟𝒛
𝜟𝒘

] = [
𝝁 − 𝑿𝒁𝒆

𝝁 − 𝒀𝑾𝒆
] (9b)

Unlike (7a) which solves all step direction vectors (i.e., Δ𝒙,

Δ𝒚 , Δ𝒘 , Δ𝒛) as one linear system, the proposed iterative

algorithm for large-scale operations updates the step directions

in an iterative approach. While updating step directions for

vector 𝒙, 𝒚, vectors 𝒘, 𝒛 are assumed to be fixed so that we only

need to solve Eqn. (9a) using memristor crossbar. After

updating 𝒙, 𝒚, we derive the step directions for vectors 𝒘, 𝒛 by

solving (9b) using memristor crossbar.

320

However, the coefficient matrix in (9a) is singular if A is not

a square matrix. That is, Eqn. (9a) has no solution. In order to

make (9a) solvable, part of the zero elements needs to be

transformed to nonzero elements while causing limited impact

to solution. Hence, following change is made to (9a).

[
𝑨 𝑹𝑼

𝑹𝑳 𝑨𝑻] [
Δ𝒙
Δ𝒚

] = [
𝒃 − 𝑨𝒙 − 𝒘
𝒄 − 𝑨𝑻𝒚 + 𝒛

] (9c)

where 𝑹𝑼 is a matrix whose upper right 𝑚 by 𝑚 sub-matrix is

zero matrix and 𝑹𝑳 is a matrix whose lower left 𝑛 by 𝑛 sub-

matrix is zero matrix

If 𝑛 > 𝑚, 𝑹𝑳 is used to replace lower left zero elements, and

if 𝑚 > 𝑛 , 𝑹𝑼 is used to replace upper right zero elements.

Random positive numbers that are less than a threshold value

are used to construct 𝑹𝑳 and 𝑹𝑼. Process alike Eqn. (6) is still

needed after this step, therefore, Eqn. (9a) is transformed into

[

𝑨′ 𝑹𝑼 𝟎 or 𝑨′′

𝑹𝑳 𝑨𝑻′ 𝟎 or 𝑨𝑻′′

𝟎 or 𝑨𝑰 𝟎 or 𝑨𝑻𝑰 𝟎 or 𝑰

] [

Δ𝒙
Δ𝒚
Δ𝒑

] = [
𝒃 − 𝑨𝒙 − 𝒘
𝒄 − 𝑨𝑻𝒚 + 𝒛

𝟎
] (9d)

On the other hand, the right hand-side vectors of Eqns. (9a)

and (9b) can be calculated as:

[
𝒃 − 𝑨𝒙 − 𝒘
𝒄 − 𝑨𝑻𝒚 + 𝒛

𝟎

] = [
𝒃 − 𝒘
𝒄 + 𝒛

𝟎
] − [

𝑨′ 𝟎 𝟎 or 𝑨′′
𝟎 𝑨𝑻′ 𝟎 or 𝑨𝑻′′

𝟎 or 𝑨𝑰 𝟎 or 𝑨𝑻𝑰 𝟎 or 𝑰

] [

𝒙
𝒚
𝒑
] (10a)

[
𝝁 − 𝑿𝒁𝒆

𝝁 − 𝒀𝑾𝒆
] = [

𝝁
𝝁] − [

𝑿 𝟎
𝟎 𝒀

] [
𝒛
𝒘

] (10b)

Details of the proposed iterative linear program solver for

enhancing scalability are described as below:

Algorithm 2: Memristor Crossbar-based Linear Program Solver

for Large-Scale Operations

Input: Matrix A, vectors b, c, constant 𝜀𝑏, 𝜀𝑐, 𝜇, 𝜃

Output: Vector x, y, w, z

Initialize x, y, w, z with an arbitrary guess.

While 𝑨𝒙 + 𝒘 − 𝒃 ≻ 𝜀𝑏 or 𝑨𝑻𝒚 − 𝒛 − 𝒄 ≻ 𝜀𝑐:

Update coefficient matrix 𝑴𝟏 in (9d) and vector p in (10a) based

on A, x, y .

Calculate vector 𝒓𝟏 based on 𝑴𝟏 and 𝒔𝟏 in (10a) using memristor

crossbar, where 𝒔𝟏 = [𝒙, 𝒚, 𝒑]𝑻.

Solve 𝑴𝟏Δ𝒔1 = 𝒓𝟏 using memristor crossbar.

Update 𝒔𝟏 = 𝒔𝟏 + 𝜃Δ𝒔𝟏

Update coefficient matrix 𝑴𝟐 in (9b). based on x, y

Calculate vector 𝒓𝟐 based on 𝑴𝟐 and 𝒔𝟐 in (10b) using memristor

crossbar, where 𝒔𝟐 = [𝒘, 𝒛]𝑻.

Solve 𝑴𝟐Δ𝒔2 = 𝒓𝟐 using memristor crossbar.

Update 𝒘, 𝒛 with 𝒔𝟐 = 𝒔𝟐 + 𝜃Δ𝒔𝟐.

End

Return 𝒙, 𝒚,𝒘, 𝒛.

E. Algorithms Complexity Comparisons

Given the fact that iteration-exiting conditions are same in

software-based PDIP algorithm and the proposed memristor

crossbar-based solver, the difference in iteration times is

minimal. For each iteration step in software-based PDIP

algorithm, a set of 2(𝑛 + 𝑚) equations needs to be solved.

Solving such linear system could require 𝑂(𝑁3) time

complexity with direct method such as Gaussian Elimination

method or LU-Decomposition, and 𝑂(𝑁2) for each iteration by

using iterative method such as Gauss-Seidel method (𝑁 = 𝑛 +
𝑚). For the proposed solver, complexity for updating X, Y, W,

Z in matrix 𝑴 is 𝑂(𝑁) (please note that matrices 𝑨 and 𝑨𝑻 do

not need updating), and solving linear system in Eqn. (7a) only

costs 𝑂(1) time complexity. That is, for each iteration the

complexity for memristor crossbar-based linear program solver

is 𝑂(𝑁), while software-based PDIP algorithm could cost at

least pseudo-𝑂(𝑁2). As for memristor crossbar-based linear

program solver for large-scale applications, complexity for

updating X, Y in matrix Eqn. (9b) is 𝑂(𝑁), and complexities for

solving (9a) and (9b) on memristor crossbar are both 𝑂(1) .

Hence, the time complexity for memristor crossbar-based linear

program solver for large-scale applications is also 𝑂(𝑁) for

each iteration step, and the overall complexity is pseudo-𝑂(𝑁).

Note that the above analysis only applies for the iterative

solution of linear programs. On the other hand, the initialization

time complexity is 𝑂(𝑁2) for dense matrices, and will be lower

for sparse matrices that are common in linear programs.

IV. EXPERIMENTS AND RESULTS

Our experiments based on memristor model from [22] show
significant improvement in speed and energy efficiency of
memristor crossbar based implementation. The estimated delay
for solving linear programs ranges from 36μs if the number of
variables is 100 to 490μs if the number of variables is 1024. This
estimation is based on (i) actual simulation results indicating that
it generally takes 9–12 iterations for convergence, and (ii) the
amount of coefficients updating in each iteration is 4N where N
is the number of optimization variables. A maximum of 7,960X
estimated improvement in speed is achieved compared with
PDIP algorithm implemented in MATLAB executed on an Intel
I7 server (when the number of variables is 1024). This significant
improvement is because of reduction in complexity and speedup
due to dedicated hardware implementation. The maximum
amount of energy reduction is 6.7 × 105X in this case, which is
even more significant than the speedup because of the low power
consumption of memristor crossbar.

Under ideal condition, matrix operations on memristor
crossbar-based design should be accurate given Kirchhoff’s law
[19]. However, due to process variations, the actual memristance
matrix of a memristor crossbar may be different from the
theoretical values. Because the impact of process variations is
too complex to be expressed by a mathematical closed-form
solution, we model it as a uniform distribution with a maximum
range 𝑑𝑚𝑎𝑥.

 (a) (b)

Fig. 3. (a) Accuracy simulation results of Memristor Crossbar-based Linear

Program Solver for up to 5% process variations of each cell. (b) Accuracy
simulation results of Memristor Crossbar-based Linear Program Solver for

Large-Scale Operations for up to 5% process variations of each cell.

Both two algorithms (discussed in Section 3.B and 3.D) are
given 1000 sets of tests with two different maximum ranges of
process variations (5%, 10%). Each set of tests contains 100

321

randomly generated tests under the same matrix size and range
of process variations. As for matrix size (𝑨 ∈ ℝ𝒎×𝒏, m = number
of constraints, n = number of variables), the number of
constraints is three times of the number of variables. The number
of constraints varies from 4 to 1024. Results obtained from

memristor crossbar-based solver are compared with 𝒄𝑻𝒙
obtained from software-based PDIP algorithm, and inaccuracy is
measured by difference in percentage. Above experiments are
modeled and simulated in Matlab using memristor crossbar
model [9]. Experiments results are shown in Fig. 3 and Fig. 4.

For 𝑑𝑚𝑎𝑥 = 5%, the inaccuracy range is 0.2% to 5.3% for
Memristor Crossbar-based Linear Program Solver and 0.01% to
0.2% for Memristor Crossbar-based Linear Program Solver for
Large Scale Operation. For 𝑑𝑚𝑎𝑥 = 10%, corresponding
inaccuracy ranges are 0.7% to 7.8% and 0.01% to 0.4%. As
shown in Fig. 3 and Fig. 4, inaccuracy decreases with increasing
of numbers of constraints. Both implementations have shown
reliable and accurate performance.

 (a) (b)

Fig. 4. (a) Accuracy simulation results of Memristor Crossbar-based Linear

Program Solver for up to 10% process variations of each cell. (b) Accuracy
simulation results of Memristor Crossbar-based Linear Program Solver for

Large Scale Operations for up to 10% process variations of each cell.

It can be observed that, inaccuracy drops significantly from
the case where the number of constraints is less than 100 to the
case where the number of constraints is less than 200. We believe
that some singular matrices induced by process variations in the
intermediate steps may cause such steep drop. While
memristance is altered under the impact of process variation, its
mapping matrix might be changed from a non-singular matrix to
closer to a singular matrix (with determinant equal to 0), which
could lead to zero solution or less accurate solution for the linear
system. Since the coefficient size is relatively small, it could be
more easily affected by some elements change and turn into a
singular matrix.

Apart from singular matrix, matrix whose determinant is
close to zero could be more vulnerable to process variations.
Recall that each unknown in the solution of a linear system can
be formulated as the division between determinants of a sub-
matrix of coefficient matrix and coefficient matrix according to
the Crammer’s rule; the solution is inversely proportional to the
determinant of coefficient matrix. Hence, matrices whose
determinant values are close to zero could lead to massive
change in values of solution under the impact of process
variation. The accuracy for above two circumstances could be
easily affected by process variation.

However, based on our randomly generated experiments, the
above two circumstances are not common, and are very rare for
large-scale matrices. With an average of 2% inaccuracy for 5%
process variations and 4% for 10% process variations and an
average of less than 0.005% inaccuracy for large-scale
operations, memristor crossbar-based linear program solver
using PDIP algorithm can provide very high accuracy with high
energy/power efficiency.

V. CONCLUSION

This paper described the design of memristor crossbar-based

linear program solver using primal-dual interior point

algorithm. Two implementations using memristor crossbar have

been presented for effectively trading-off between hardware

complexity and computing speed. We also presented extension

schemes to large-scale applications. Experimental results

demonstrate reliable performance with high accuracy.

REFERENCES
[1] A Heittmann and T G Noll, “Limits of writing multivalued resistances

in passive nano-electronic crossbars used in neuromorphic circuits,” ACM
Great Lakes Symposium on VLSI (GLSVLSI), 2012, pp. 227–232.

[2] D. Kadetotad, Z. Xu, A. Mohanty, P-Y. Chen, B. Lin, J. Ye, S. Vrudhula,
S. Yu, Y. Cao, and J-S Seo, “Neurophysics-inspired parallel architecture
with resistive crosspoint array for dictionary learning,” in IEEE
Biomedical Circuits and Systems Conference (Bio-CAS) 2014, Lausanne,
Switzerland.

[3] B. Liu, Y. Chen, B. Wysocki, and T. Huang, "The circuit realization of a
neuromorphic computing system with memristor-based synapse design,"
in Neural Information Processing, 2012, pp. 357-365.

[4] D B Strukov, G S Snider, D R Stewart, and R S Williams, “The
missing memristor found,” Nature, vol 453, pp. 80–83, 2008.

[5] Q. Xia, W. Robinett, M. W. Cumbie, N. Banerjee, T. J. Cardinali, J. J.
Yang, W. Wu, X. Li, W. M. Tong, D. B. Strukov, G. S. Snider, G.
Medeiros-Ribeiro, and R S Williams, “Memristor-CMOS hybrid
integrated circuits for reconfigurable logic,” Nano letters, vol 9, no 10,
pp. 3640–3645, 2009.

[6] J. Liang, S. Yeh, S. S. Wong, and H.-S P Wong, “Effect of
wordline/bitline scaling on the performance, energy consumption, and
reliability of cross-point memory array,” ACM Journal on Emerging
Technologies in Computing Systems, vol. 9, no. 1, 2013.

[7] S. H. Jo, T. Chang, I. Ebong, B. B. Bhadviya, P. Mazumder, and W. Lu,
“Nanoscale memristor device as synapse in neuromorphic systems,” Nano
letters, vol. 10, no. 4, pp. 1297–1301, 2010.

[8] M. Di Ventra, Y.V. Pershin and L O Chua, “Circuit elements with
memory: memristors, memcapacitors, and meminductors,” Proceedings of
the IEEE, vol. 97, no. 10, pp. 1717–1724, 2009.

[9] M Hu, H Li, Y Chen, G Rose, and Q Wu, “BSB Training Scheme
Implementation on Memristor-Based Circuit,” 2013 Symposium Series on
Computational Intelligence, 2013.

[10] Analog Input Buffer Archiecture:
https://www.cirrus.com/en/pubs/appNote/an241-1.pdf.

[11] J Steensgaard, “Bootstrapped low-voltage analog switches,” in
International Symposium on Circuits and Systems (ISCAS), 1999.

[12] X. Liu, M. Mao, B. Liu, H. Li, Y. Chen, B. Li, Y. Wang, H. Jiang, M.
Barnell, Q Wu, and J Yang, “RENO: a high-efficient reconfigurable
neuromorphic computing accelerator design,” in Proc of Design
Automation Conference (DAC), 2015.

[13] S Vangal, J Howard, G Ruhl, and S Dighe, “An 80-tile 1.28TFLOPS
network-on-chip in 65nm CMOS,” in IEEE International Solid-State
Circuits Conference (ISSCC), 2007.

[14] Robere R ; 2012; “Interior Point Methods and Linear Programming”;
University of Toronto.

[15] Robert O. Ferguson "Linear Programming," American Machinist, April
11, 1955, pp. 121-136.

[16] Vanderbei, R. J. (2001) Linear Programming, Foundations and Extensions
(Kluwer Academic, Boston).

[17] L Chua,“Memristor the missing circuit element,” IEEE Transactionon
Circuit Theory, vol. 18, pp. 507–519, 1971.  

[18] D B Strukov, G S Snider, D R Stewart, and R S Williams, “The
missing memristor found,” Nature, vol. 453, pp. 80–83, 2008.

[19] Rak, A.; Cserey, G., "Macromodeling of the Memristor in SPICE," in
Computer-Aided Design of Integrated Circuits and Systems, IEEE
Transactions on , vol.29, no.4, pp.632-636, April 2010

[20] Karmarkar N.K., An Interior Point Approach to NPComplete Problems
Part I, AMS series on Contemporary Mathematics 114, pp. 297308.

[21] George B. Dantzig and Mukund N. Thapa. 1997. Linear programming 1:
Introduction. Springer-Verlag

[22] Yakopcic, C.; Taha, T.M.; Hasan, R., "Hybrid crossbar architecture for a
memristor based memory," in Aerospace and Electronics Conference,
NAECON 2014 - IEEE National , vol., no., pp.237-242, 24-27 June 2014

322

