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Abstract—When studying a network, it is often of interest to
understand the robustness of that network to noise. Network
robustness has been studied in a variety of contexts, exam-
ining network properties such as the number of connected
components and the lengths of shortest paths. In this work, we
present a new network robustness measure, which we refer to
as ‘sampling robustness’. The goal of the sampling robustness
measure is to quantify the extent to which a network sample
collected from a graph with errors is a good representation of
a network sample collected from that same graph, but without
errors. These errors may be introduced by humans or by the
system (e.g., mistakes from the respondents or a bug in an API
program), and may affect the performance of a data collection
algorithm and the quality of the obtained sample. Thus, when
data analysts analyze the sampled network, they may wish to
know whether such errors will affect future analysis results.

We demonstrate that sampling robustness is dependent on
a few, easily-computed properties of the network: the leading
eigenvalue, average node degree and clustering coefficient.
In addition, we introduce regression models for estimating
sampling robustness given an obtained sample. As a result,
our models can estimate the sampling robustness with MSE <

0.0015 and the model has an R-squared of up to 75%.

1. Introduction

Within the field of data mining, studying the structure of
complex networks has become an interesting and important
task. Data analysts can gain several insights by analyzing
real-world networks. For example, one can study how fast
information flows through a network, how people form a
community, or identify products to recommend to consumers.
However, before performing any graph analysis task, one
must collect appropriate network data.

Depending on the domain, there may be many ways to
collect network data. For example, one can collect social
data through pen-and-paper questionnaires or by interviewing
subjects, or for online networks, one can query platforms
through a provided API. In some applications, a data analyst
or a data collector may have no initial knowledge about
a network except the identity of a single seed node (e.g.
the first person that she will interview). A network sample
can be expanded by querying already-observed nodes to
learn their neighbors. In this work, we assume that all edges
incident to the queried node are observed and added to the
network sample. We refer to this process as network sampling
or sampling through crawling. Over the past few decades,
many crawling algorithms have been introduced and used,
such as breadth-first search, depth-first search, many variants
of random walk, and so on.

In real world application scenarios, errors may occur
during this data collection process. When a data collector
performs a query, a list of neighboring nodes is returned
in response. However, this list may be incomplete. Such
errors can occur for many reasons: for example, a participant
who answers a questionnaire may make a mistake on their
answer, a web crawler may have a bug and fail to extract
links from web pages, or an adversary may tamper with
the API and alter the information exchanged between two
parties. These errors may then lead to errors in a subsequent
network analysis. Therefore, it is important for a data analyst
to know if a collected sample is trustworthy.

In this work, we introduce a new network robustness
measure, which we call sampling robustness. To the best
of our knowledge, while there are many ways to evaluate
network robustness in general, there is no existing work that
measures a network’s robustness with respect to sampling.
For a crawler of choice C, the sampling robustness of
network G, denoted by Rp(G,C), is defined as the expected
similarity between two samples: one produced by crawler
C on an error-free version of G, and one produced by C
on a version of G in which each edge is missing with
probability p. Intuitively, if a network is robust to this error,
the performance of a crawler C will be mostly unaffected
by missing edges when it crawls network G.

In this work, we model error as random edge deletion,
though our definition could easily be adapted to other types of
error. Our goal is to investigate how the sampling robustness
of a network changes due to random edge deletion, and
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analyze network sampling robustness with respect to the
network’s structural properties, allowing a data analyst to
predict whether a network will have high or low sampling
robustness by measuring only a small set of parameters.
We observe that sampling robustness is correlated with
the network’s leading eigenvalue, average node degree,
and global clustering coefficient. Thus, with these simple
measurements, one can estimate a network’s robustness.

Our contributions can be summarized as follows:
1) We introduce and define a new robustness measure,

sampling robustness, which measures the robustness of
a network with respect to sampling by a crawler when
edges from the original network are dropped at random.
Each edge has probability p that it will be removed
from a list of returned edges after each query.

2) We show that the sampling robustness highly depends
on the network structure. Networks of different types
have different level of sampling robustness.

3) We observe that sampling robustness is highly correlated
with the leading eigenvalue, average degree and average
clustering coefficient calculated from sampled networks.

4) We present regression models for estimating sampling
robustness given a sampled network.

2. Related Work

In this section, we explore previous literature that relates
to network sampling and network robustness.

Network Crawling: In the past decades, there have been
many network crawling techniques proposed for various fields
of study. Many researchers have used basic graph traversal
techniques like breadth-first search (BFS) or depth-first search
(DFS) for web crawling [1], [2]. For example, Mislove, et al.
use a BFS crawler to collect samples of many online social
networks (Orkut, Youtube, Live Journal, and Flickr) in [1].
BFS crawlers have also been used for collecting hyperlinks
on the WWW in [3]. Snowball sampling, a variation in BFS
in which only a fraction of each node’s neighbors are added
to the queue, has been used for finding hidden populations, a
necessary task in some social science research [4], [5]. Such
methods are appealing in part because of their simplicity.
Random walk crawlers are another popular method. Random
walks have been used for crawling peer-to-peer networks [6],
[7], the WWW [8], [9] and online social networks [10],
[11]. Variations on random walks are useful for collecting a
uniform sample [12], [13].

The literature also contains analyses of network crawling
methods. In [14], Leskovec and Faloutsos study the char-
acteristics of different sampling methods. Their objective
is to determine which method generates samples with the
least bias. Similar studies are presented in [15], [16]. An
analysis of BFS crawler is presented [17]. The results shows
that BFS crawler is biased towards nodes with high degree.
Areekijseree et al. present a series of extensive experiments
in [18] which focus of the crawlers’ performance. Several
crawlers are evaluated on synthetic and real networks. They
observe that the performance of a crawler is highly dependent
on network properties.

Saroop and Karnik study the performance of different
crawlers on the task of node coverage, focusing on the
crawler that is the best to crawl Twitter network [19]. Other
properties like in- and out- degree distributions are also taken
into account when network is crawled. Similarly, Baeza-Yates,
et al. focus on the crawlers for collecting web pages [20].
Several crawlers are studied based on how well they find
important pages. Results show that the BFS crawler has poor
performance, as compared to other crawlers like PageRank
and OPIC. Hu and Lau present an excellent survey of
several popular sampling methods for both down-sampling
and crawling [21]. Several important network properties,
theoretical studies and different types of evaluation criterion
are discussed in detail.

Network Robustness: To the best of our knowledge,
there is no existing work on network robustness on network
crawling or data collection. However, there are numerous
studies on other forms of network robustness. Work on
network robustness has a long history and it has been heavily
studied by researchers from different backgrounds, including
computer science, biology, physics and mathematics. In
general, network robustness is defined as the ability of a
network to keep functioning when there is a random failure
or targeted attack [22]. For example, a telecommunications
network is considered to have high robustness if the network
continues its functions and services when some devices fail.
Intuitively, robustness is all about back-up possibilities or
alternatives paths [23]. Interest in network robustness was
sparked by the study of Albert el al. [22]. They study the
effect of random failures and targeted attack. They measure
network robustness by the diameter of the network and size of
the largest connected component. The results show that scale-
free networks have a high degree of tolerance against random
failure, as opposed to random networks. However, scale-free
networks are very sensitive to targeted attack. The diameter
of the network drastically increases and the network breaks
into several components when the hub nodes are attacked.
Cohen et al. are interested in finding the critical point (exact
fraction of nodes to be removed, which causes the networks
to break into isolated fragments) under a targeted attack
in [24]. Other measures for capturing network robustness are
proposed, including shortest-path [25], path diversity [26],
eigengap [27], spectral radius [28].

3. Sampling Robustness

In this section, we begin by giving a brief description
of the data collection process and random error. Next, we
provide the details of different crawling techniques. Lastly,
we define sampling robustness of a network G.

3.1. Network Data Collection

Let G = (V,E) be an undirected, unobserved network,
where V is the set of nodes and E is the set of edges. At
the start of the data collection process, only the identity of
a single seed node is available. A data collector collects a
network sample by adopting a crawling technique C. Given



a seed node and a query budget, the crawler expands the
sample by iterative querying observed nodes. For each query
response, all the neighboring nodes and incident edges are
returned and added to the sampled network. The crawler
selects the next queried node from the list of observed nodes
in the obtained sample and repeats until the query budget is
exhausted. We assume that the data collector queries each
observed node at most once. A crawler C thus generates a
sampled network S = (V ′, E′) where V ′ ⊆ V and E′ ⊆ E
are a list of nodes and edges observed, respectively.

3.2. Random Error

Error can originate from many different sources, such
as mistakes or missing answers from survey respondents, a
misreading of instruments by the data collector, or a bug
in the data collection program. In this work, we consider
the case of error caused by random edge deletion. With this
type of error, each query misses some fraction of edges. To
model this type of error, each returned edge has a probability
p that it will be removed from a list of returned edges after
each query. If there is an edge between node A and B, this
edge may be missed when a crawler queries on node A, but
this edge may be discovered when B is queried.

3.3. Network Crawling Technique

In this section, we describe each crawling method in
details. We select three popular crawling algorithms: BFS,
random walk and MOD. These crawlers were selected
as they represent three important categories of crawling
algorithms [18]. To collect a network sample, each crawler
is given the same seed node and the same total query budget
(in our experiments, we set a budget to be 10% of the total
nodes of a network).

Breadth-first search (BFS): The BFS crawler selects the
node that has been in the list of unqueried nodes the longest
(First-in, First-out). After each query, all of the neighboring
nodes that have not been queried are added to the queue.
BFS crawler uniformly expands its frontier and is good at
capturing a complete view of the networks.

Random walk (RW): In each iteration, the crawler
transitions to a neighbor of the node that was just queried
at random. The crawler performs a query if it lands on
an unqueried node. The random walk crawler is capable of
finding many nodes from different regions (e.g. communities).
Here, the random walk crawler cannot teleport.

Maximum observed degree (MOD): This crawler se-
lects the unqueried node with the highest degree. The MOD
crawler finds hub nodes in a few iterations [29].

3.4. Measuring Sampling Robustness

We define a novel network measure, sampling robustness,
which measures the extent to which a sample generated
by a crawling algorithm in the presence of errors (either
in the original network- e.g., a communications network

in which edges flicker in and out of existence- or in the
crawling process itself- e.g., errors in the crawling process) is
representative of a sample generated by the same algorithm
without errors. If a network G has high sampling robustness,
the performance of a crawler C on network G will be
consistent regardless of whether there are errors in the
original network or in the data collection process. Here, we
assume such errors take the form of edges missing uniformly
at random, but the definitions and analysis that we present
can easily be generalized to other types of errors.

Definition 3.1. Sampling Robustness

Rp(G,C) =
sim(M(S),M(S

′
))

R̄0

We denote the sampling robustness of G when p fraction
of edges are missing uniformly at random as Rp(G,C),
which is shown in Definition 3.1 In this paper, we let S
represents the complete sample (i.e., the sample produced by
running C on G), and let S

′
represents the sample obtained

by the crawler C with errors (i.e., the sample produced by
running C on G with missing edges). The numerator is
defined by computing the similarity between two samples,
S and S′, produced by a crawler C: the first on the original
network G without errors, and the second on a version of G
in which p fraction of edges have been removed at random.

In the denominator, we account for potential randomness
in sampling (including the choice of seed node from which
the crawler begins). We normalize this value by R̄0, which
represents the average similarity between two samples in the
case where there are no missing edges (p = 0). To calculate
this, we generate multiple error-free samples and compute
the average similarity of these samples against each others.

Performance measure: In Definition 3.1, M(S) is
an application-specific function which characterizes the
performance of the crawler C when it generates a sample
(e.g., if one is interested in the sampling robustness of a
network for the community detection application, M(S)
could represent the set of communities detected on S). Note
that M(·) can be any function, as depends on the sampling
goal. This means that different types of outputs can be
returned by M(·). Some examples are as follows:

• Numbers - e.g. the number of nodes or edges found
• A set - e.g. the distinct nodes in the sample.
• A set of sets - e.g. communities in the sample.
• A distribution - e.g. degree distribution of the sample.

Thus, the appropriate similarity measure depends on the
output of M(·). Some examples are as follows:

sim(·, ·) =


1− dcanberra/L1/L2

, numbers

Jaccard similarity, a set

Normalized Mutual Info. a set of sets

1−KS statistic, distribution

Our code and implementation can be found at
https://github.com/kareekij/sampling-robustness.



4. Sampling Robustness and Network Type

TABLE 1: Statistics of network. |V | is a number of nodes,
|E| is a number of edges, d̄ is an average degree, c̄c is a
average clustering coefficient and λ1 is a leading eigenvalue
of adjacency matrix A of the network. These networks can
be downloaded from www.networkrepository.com

Type Network |V | |E| d̄ c̄c λ1

CA
Erdos992 4991 7428 2.977 0.08352 15.13
HepTh 8638 24806 5.743 0.4816 31.03
GrQc 4158 13422 6.456 0.5569 45.62

BIO
CE-GN 2215 53680 48.47 0.1843 96.22
CE-PG 1692 47309 55.92 0.4467 152.6
SC-GT 1708 33982 39.79 0.3491 109.9

SOCFB
Amherst41 2235 90954 81.39 0.3104 137.1
Colgate88 3482 155043 89.05 0.2673 141.9
Bowdoin47 2250 84386 75.01 0.289 124.2

SOC
Hamsterster 2000 16097 16.1 0.54 50.02
Advogato 5054 39374 15.58 0.2526 70.51
Wiki-Elec 7066 100727 28.51 0.1418 138.1

Tech
PGP 10680 24316 4.554 0.2659 42.44
Router-RF 2113 6632 6.277 0.2464 27.67
WhoIS 7476 56943 15.23 0.4889 150.9

Our definition of sampling robustness requires access
to the original network G. Note that this is something of
a contradiction: if one has the entire original network G,
one need not concern oneself with sampling, or even with
robustness! So in practice, if one has collected a sample,
with errors, from a graph G, how can one determine whether
that sample is likely to be a good representation of the
sample one would have obtained had the sampling process
not contained errors?

Naturally, the sampling robustness of a network must
depend on that network’s properties. As shown in [18],
networks of the same type tends to have similar properties.
For example, an average degree of collaboration network
(e.g. number of names appears on the manuscript) is around
5 while the average degree of the social network (number of
friends) is around 20. By considering network type, we can
roughly classify networks by their properties. We computed
the sampling robustness of 15 networks on 5 categories. In
this paper, we use M(·) as a size of the sample or node
coverage, which defined as

M(S) = |{v ∈ V
′

s , V
′

s ⊆ V }|

This function measures the performance of a crawler in
terms of the number of nodes discovered after a crawler
performs some specified number of queries. To compare the
similarity of two samples S and S

′
(each produced with

the same number of queries), we use the Canberra Distance,
since the output is normalized between 0 and 1. So, the
similarity between S and S

′
is defined as

sim(M(S),M(S
′
) = 1− dcanberra(|V

′

s |, |V
′

s′ |)

Figure 1: Aggregate results of Rp(G,BFS) when p is
ranging between 0.1-0.5. Each point represent a network
from various categories (along x-axis). Sampling robustness
highly depends on network type.

Statistics of each network are listed in Table 1. Results
are illustrated in Figure 1. Each point represents the sampling
robustness of a network, as computed over 10 trials. p
is varied between 0.1 and 0.5. We use a BFS crawler to
collect samples. Similar results were obtained for other tested
crawlers (random walk and MOD, specifically).

As we can clearly see in Figure 1, networks of different
types tend to have different levels of sampling robustness
and networks in the same category have similar sampling
robustness. Biological and Facebook networks tend to be the
most robust, as opposed to collaboration networks, which
have the lowest sampling robustness.

5. Characterizing Sampling Robustness

As noted in the previous sections, computing sampling
robustness requires generating an error-free sample S. In
real-world applications, obtaining this sample is not practical.
In the previous section, we showed that one can roughly
estimate sampling robustness from the network category.
In this section, we will demonstrate that Rp(G,C) highly
depends on the structural properties of both the original
network G as well as the obtained network samples S

′
.

Our earlier work demonstrated that the structural prop-
erties of the network play the important role in network
sampling [18]. Specifically, certain network properties en-
hance (or degrade) the efficiency of a crawler.

When sampling error occurs, certain edges may be
invisible to the crawler. The ability of the crawler to expand
the sampled network may thus drop, because the crawler
makes its query decisions based on the nodes and edges in
the sampled network that it has observed so far. What, then,
are the properties that make a network robust to sampling?

Here, we investigate three properties that we believe
support a crawler in expanding a sample’s boundary; leading
eigenvalue λ1, average node degree d̄, and average clustering
coefficient. Leading eigenvalue and average node degree
are closely related, since λ1 is bounded by the degree



(a) Aggregate results of Rp:0.1→0.5 against leading eigenvalue λ1

(b) Aggregate results of Rp:0.1→0.5 against leading average degree.

(c) Aggregate results of Rp:0.1→0.5 against average clustering coefficient.

Figure 2: Each point represents a network. Sampling robustness highly depends on λ1 and d̄, but not c̄c of a network.

of a network [30]. Intuitively, if the average degree of a
network is k, a naive crawler should discover approximately
k nodes on average for each query. Thus, the higher average
degree, the higher amount of nodes a crawler discovers which
makes network more robust. Similarly, a network with high
average clustering coefficient indicates densely connections
between nodes. Thus, a network with high average clustering
coefficient will help a crawler to find many nodes in a few
iterations which makes network robust to missing edges. We
observe that sampling robustness is highly dependent on these
network properties, as computed in both the original network
as well as the sample generated with errors. Figure 2 and 3
illustrate the correlation between sampling robustness and
each property on original network G and obtained sample
network S

′
, respectively.

The largest eigenvalue of the adjacency matrix A, de-
noted by λ1, plays an important role in forecasting epidemic
spreading processes. As shown in [30], λ1 is related to the

epidemic threshold τ , which governs how quickly disease
can spread through a network via the SIR model. It has been
shown that τ = 1

λ1
, so, one can predict whether an epidemic

will die out on any given network by considering only a
single parameter. In the SIR model, where β is the birth rate
and γ is the curing rate, the epidemic will die out iff β

γ < τ .

The epidemic process and network data collection process
have similar dynamics. Both starts from a single seed node
and gradually expand outwards. In both cases, we look at
the population of interest after t time steps: i.e., how many
people get the diseases or how many distinct users a crawler
discovers through crawling.

We can consider network crawling to be a simpler version
of epidemic model, where γ is a constant and β is a crawl
rate (e.g., number of requests per second, number of new
nodes added to sample). So, we can use λ1 to indicate how
fast the crawler can expand the sample. Since λ1 is bounded
by the average degree, the larger λ1 means the higher average



(a) Aggregate results of Rp:0.1→0.5 against leading eigenvalue λ1

(b) Aggregate results of Rp:0.1→0.5 against leading average degree.

(c) Aggregate results of Rp:0.1→0.5 against average clustering coefficient.

Figure 3: Each point represents a network. Sampling robustness highly depends on observed λ1, d̄ and c̄c of S
′
.

degree. As we will see in Figure 2b, higher average degree
indicates that a crawler can easily expand its sample.

In Figure 2a, we plot sampling robustness against leading
eigenvalue λ1 of the adjacency matrix A of the network G.
The leading eigenvalues of the error-containing sample S

′

are shown in Figure 3a. In these figures, each point is the
sampling robustness of a network, computed as an average
over 10 experiments. Each sub-figure illustrates a case
when different crawling technique is used. The relationship
between sampling robustness and leading eigenvalue is highly
correlated. As expected, we observe that a network with
higher leading eigenvalues (low threshold τ ) is more robust.
This indicates that a crawler can easily expand its sample
even the edges are missing.

Next, the average degree indicates the number of neigh-
bors of each node, on average (e.g. average number of friends
of people on social network). Intuitively, a crawler can more
quickly expand its sample if the average degree is large, and

can continue to do so even if some of the edges are lost.

Figure 2b illustrates the average sampling robustness
against average degree of a network. The average observed
degree of samples are shown in Figure 3b. The results
are aggregated over 10 runs when p is varied from 0.1
to 0.5. Each sub-plot represents results from different types
of crawler. As we expected, the sampling robustness is also
highly correlated with the average degree of the networks as
well as the average observed degree of the obtained samples.

Lastly, we consider the average clustering coefficient of
the network and the samples. This property measures how
well nodes are connected. A higher clustering coefficient in-
dicates that neighboring nodes are densely connected to each
others. Intuitively, when nodes are densely connected (near
clique structure), the crawler will discover nodes quickly,
and is more robust against missing edges. In Figure 2c, we
observe that the clustering coefficient of a network G is
not correlated with its sampling robustness. However, we



do observe that the clustering coefficient of a sample S
′

is
correlated with the sampling robustness. This may be because
a large portion of the nodes in network G have degree 1 due
to the power-law distribution, and these nodes bring down
the average clustering coefficient overall. On the other hand,
our selected crawlers are known to be biased toward hub
nodes [17], [31], so the sampled networks contain nodes
with high degree connecting to each others. The sampled
network represents the inner-core structure of the network
rather than the periphery, which is a better indicator for
measuring robustness.

6. Sampling Robustness Estimation

In this section, we introduce a regression model which
we can use to estimate a sampling robustness of any network
given an obtained sample. We describe how to estimate error
probability p and show how we construct our models for
estimating sampling robustness in subsection 6.1. Then, we
evaluate the models and report the results in subsection 6.2.

6.1. Model Training

6.1.1. Regression Model. Here, we present a model for
each of the BFS, random walk, and MOD crawlers. Given
an obtained sample S

′
that is generated by a crawler C, we

can estimate the robustness of the original graph G from the
observed properties of the sampled network S

′
as

R̂p = c1p+ c2d̄
′
+ c3λ

′

1 + c4c̄c
′
+ c5(cc

′
× d̄

′
) + b

From the previous section, there is a high correlation
between sampling robustness and the observed structural
properties of a sampled network. Thus, we build and present
a linear regression model for estimating the sampling robust-
ness. We train our model from the sampled networks which
we obtained in the previous experiment. In total, there are
around 2,200 sampled networks used in the model training.

TABLE 2: Coefficients and intercept of each model

Model c1 c2 c3 c4 c5 b

M1-RW -0.1843 0.0127 -0.0009 0.4374 -0.0245 0.8661

M2-BFS -0.1951 0.0119 -0.0006 0.2165 -0.0250 0.9313

M3-MOD -0.2199 0.0094 -0.0006 0.3928 -0.0152 0.8801

This model represent the relationship between the re-
sponse variable (R̂p) and predictor variables (d̄′ , c̄c

′
, λ

′

1, p).
However, before the estimation, uses need to estimate the
error probability p, which can be done as follows.

6.1.2. Estimating error probability. The probability p can
be estimated by performing multiple queries on the same
node and counting the number of times a particular edge is
duplicated. Let k be the number of times a crawler queries
node u, and e be one of the edges incident to node u in
G. So, p can be estimated by p = 1− ke

k , where ke is the

number of times edge e is seen after k queries on u. Users
can estimate p with a small k. In our analysis, we assume that
these multiple queries are performed using a small amount
of budget, and is done after obtaining the samples.

6.2. Model Evaluation

To test our model, we use samples generated from the
networks listed in Table 3. These networks were not used in
generating the regression model. We use these networks as
the original networks G, and use the BFS, random walk, and
MOD crawlers to generate samples. The error probability
p ranges from 0.1 and 0.5. For each network, ten network
samples are generated using each crawler, for each of p. In
total, we have around 600 sampled networks.

TABLE 3: Statistics of network used for model testing.

Network |V | |E| d̄ c̄c λ1

Hamilton46 2312 96393 83.38 0.2983 135.93
Trinity100 2613 111996 85.72 0.2903 135.83
Epinion 26588 100120 7.53 0.1351 66.206
Caida2007 26475 53381 4.03 0.2082 69.643

We evaluate our models through mean square error
(MSE) and R-squared (R2). MSE measures the quality of
the estimate (lower is better) while R2 measures how well
the model fits the data (higher is better).

TABLE 4: Evaluation of the each regression model in term
of Mean Square Error (MSE) and R-square (R2).

M1 M2 M3

MSE 0.00127 0.00089 0.00142

R2 0.7258 0.7147 0.7440

The evaluation results of each model are shown in Table 4.
Our proposed models are capable of estimating the sampling
robustness of a network G from a sample S

′
with very small

MSE (< 0.0015) and a R2 of up to 0.75.
Through this method, users can estimate the sampling

robustness of any network given an obtained sample. We
evaluate the model and the results show that these model
have good R2 and it estimates sampling robustness with a
small error. This lets the user understand whether the results
of an analysis performed on a particular sample with errors
are a good representation of the results one would have
gotten from analyzing a sample without errors.

7. Conclusion

We presented a novel network robustness measure called
“sampling robustness”, which measures how much the per-
formance of a network crawler changes when the edges are
missing during the data collection process. We demonstrated
that different network types have different level of robustness,



and that sampling robustness is highly dependent on the
structural properties of the original graph. In addition, it
is also correlated with the structural properties calculated
from the obtained network samples. We presented models
for estimating sampling robustness based on the observed
properties in the samples. These models are capable of
predicting sampling robustness with MSE less than 0.0015
and an R-squared of up to 75%.

In this work, we demonstrated the correlation between
one type of sampling robustness and graph properties. How-
ever, our definition of sampling robustness is dependent
on a particular performance measure. In our future work,
we are interested in further investigating the relationship
between sampling robustness and graph properties under
different performance measures. We will also explore whether
a theoretical analysis can give us a better understanding and
estimation.
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