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Abstract—When performing any analysis task, some informa-
tion may be leaked or scattered among individuals who may not
willing to share their information (e.g., number of individual’s
friends and who they are). Secure multi-party computation
(MPC) allows individuals to jointly perform any computation
without revealing each individual’s input. Here, we present
two novel secure frameworks which allow node to securely
compute its clustering coefficient, which we evaluate the trade
off between efficiency and security of several proposed instan-
tiations. Our results show that the cost for secure computing
highly depends on network structure.

1. Introduction

While network analysis is important, in many real ap-
plications, data may be scattered among parties who wish
to keep their information private. In such cases, it is still
often desirable to conduct standard graph analysis tasks, such
as community detection, identifying influential nodes, etc.
Existing algorithms for distributed network analysis (e.g.,
MapReduce) leak a great deal of private information. On
the other hand, secure multi-party computation (MPC) is to
allow mutually-distrusting individuals to jointly compute the
output of some function of their individual inputs.

While any algorithm can be converted into a fully-secure
representation (e.g., using Yao’s Garbled Circuit [1]), these
methods are mostly conceptual, as they are dramatically
inefficient. Our long-term goals are to develop a ‘library’
of secure MPC techniques for performing graph operations,
which can then be combined into more sophisticated net-
work analysis techniques. In this paper, we present two
different frameworks of converting the clustering coefficient
computation into different MPC primitives, and for each
framework, give multiple instantiations to demonstrate the
efficiency-security tradeoff.

2. Computing Clustering Coefficient
Here, we demonstrate multiple ways in which a node u

can compute its own triangle participation count (TPC). From
this, the node can trivially compute its clustering coefficient.
In a non-secure setting, a node’s TPC is computed by iterating
over all pairs of its neighbors and counting how many of
those pairs are themselves connected. In a secure setting, a
node does not know its neighbors’ connections. Here is a
list of MPC operations, which can be computed securely in
various ways [2]:
1) Secret Sharing splits some object (a number, a set, etc.)
among several parties so that no single party can recover
the value of the object.
2) Private Set Intersection Cardinality (PSIC), Private
Set Union (PSU), and Secure Sum (SECSUM) compute
the sizes of the sets intersection, the union of multiple sets,
and the sum of numbers, and secret share the results.

This suggests a natural construction (C1) for counting
triangles. Let u’s neighbors are nb(u) = {v1, ..., vk}. For
every vi ∈ nb(u), u and vi run the PSIC subprotocol between
the nb(u) and nb(vi) with the cardinality result secret-shared
between u and vi. Then u and vi ∈ nb(u) run SECSUM
among themselves to obtain the count of triangles. We can
consider four instantiations of C1, as follows:

C11 naturally follows C1 by scheduling PSIC on u
and vi ∈ nb(u), secret-sharing this result between u and vi,
and performing SECSUM on u, v1−k. SECSUM requires
(k + 1)-party, but deg(u) is leaked. In C12, u randomly
selects a ‘representative’ node v

′ ∈ nb(u). For each PSIC,
neighbor vi secret-shares its neighborhood between u and v′,
and u performs PSIC between itself and v′. SECSUM
is then run only on u and v′. Thus, it makes C12 much
more efficient than C11, but deg(u) is still leaked to v′.
C13 is similar to C11, except that u only runs the PSIC
secure operation. This instantiation leaks the PSIC results
(u learns common neighbors of each vi). C13 is fast because
fewer computations are done securely. C14 has no secure
computations (fastest but insecure). Information of u’s and
its neighbors’ connections are leaked.

We can also define construction C2: Given node u, C2
runs PSU on nb(v1), ..., nb(vk) to generate a multiset of
u’s 2-hop neighbors, and then runs a PSIC between the
set of u’s neighbors and the multiset of u’s 2-hop neighbors.
The same security-efficiency tradeoff that we saw for C1 can
be obtained for C2 by defining instantiations C21, ..., C24
in a similar manner.
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The Costs of MPC: This security comes at a cost of
gross inefficiency. Instead, secure algorithm designers typi-
cally build an secure algorithm, and accept some information
leakage. The costs of PSIC or PSU operations depends on
sizes of the sets being considered and the number of parties
in the operation, but the cost of SECSUM depends on the
number of parties involved.

To estimate the cost, we express secure algorithms in a
Boolean/arithmetic circuit and count the number of AND
gates, using the classic GMW MPC protocol [2]. We use
the number of AND gates to model the computation cost,
which is defined as C = m · n · (n − 1)/2, where n and
m is the number of parties and AND gates. So, we get:
C[PSIC] = (M1 + M2) · log(M1 + M2) · (n2 − n)/2,
C[PSU ] = (

∑n
i=1 Mi) · log(

∑n
i=1 Mi) · (n2 − n)/2, and

C[SECSUM ] = (n3 − n2)/2.

3. Experiments
As mentioned, the costs of the primitive operations

depend on the number of parties and sizes of the input
sets. Each node runs its own MPC protocol, so we are not
interested in the overall computation cost of all nodes in the
network, but rather the total cost per node. We do not show
results for C14 or C24, do not use MPC, and so are fast.
Experimental Setup: We consider three network properties
that could computational cost: average degree, degree dis-
tribution, and clustering coefficient. We generate 2000-node
networks according to the Erdos-Renyi (binomial degree
distribution) and LFR [4] (power law) models.

(a) Results when varying average degree

(b) Results when varying clustering coefficient

Figure 1: Average total computation cost of each node
on networks with different average degrees and clustering
coefficients. Costs increase with degree.

Results: Figure 1 shows the average total computation cost
of every node as average degree and clustering coefficient
vary, on ER networks (results on LFR networks were similar).

The computational cost increases as average degree
increases, since it highly depends on number of parties
(neighboring nodes) involved during the secure computa-

tion. Surprisingly, clustering coefficient (which plays a role
in the size of the overlap between a node’s neighbors’
neighborhoods) has little effect on the computation cost.
Instantiations C12 and C13 have similar computation cost,
but C13 is less secure (PSIC is done outside MPC protocol,
the information of node’s neighbors may be leaked). C21
and C23 consistently have the highest costs. Overall, the C2
construction is more expensive than C1.
3.1. Related Work

There has been limited work on secure graph mining.
Nayak, et al. introduce GraphSC, which outsources com-
putation to two cloud providers [5]. Wu, et al. consider
finding shortest paths while preserving privacy [6]. Hu, et
al. show how to use random walks to find communities,
so that a node’s community membership and neighborhood
information are not leaked outside its community [7].

Recent research has been dedicated to building practical
MPC software systems [8]. Practical systems are built on
top of MPC protocols including Yao’s garbled circuits [1] or
the GMW protocol [2]. There is an important set of research
on privacy-preserving graph mining [9].

4. Conclusions
The purpose of this work was to demonstrate, using clus-

tering coefficient as an example, how one can design secure
MPC algorithms for conducting secure, distributed network
analysis. We proposed two high-level constructions, C1 and
C2, and for each, described four instantiations corresponding
to different levels of security. Our long-term goal is to
develop a library of secure graph primitive operations, which
can then be combined into more sophisticated techniques,
such as community detection or link prediction.
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