
Social-Aware Decentralization for Secure and

Scalable Multi-Party Computations

Yuzhe Tang
Dept. of EECS, Syracuse University

ytang100@syr.edu

Sucheta Soundarajan
Dept. of EECS, Syracuse University

susounda@syr.edu

Abstract—This work studies the problem of MPC decentraliza-
tion - that is, identifying a set of computing nodes to securely
and efficiently execute the multi-party computation protocol
(MPC) over a sensitive dataset. To balance between under-
decentralization with high risk and over-decentralization with
high cost, our unique approach is to add social-awareness, that
is, the MPC protocol, running over a social network, is properly
decentralized among the computing nodes selected carefully
based on their social relationship. The key technical challenge
is in estimating the risk of collusion between nodes on whom
the computation is run. We propose solutions to estimate the
risk of collusion based on (incomplete) social relationship, as
well as algorithms for finding the MPC nodes such that the risk
of collusion is minimized. We evaluate our methods on several
real-world network datasets, and show that they are effective in
minimizing the risk levels. This work has potential in enabling
efficient privacy-preserving data sharing and computation in
emerging big-data federation platforms, in healthcare, financial
marketplaces, and other application domains.

I. INTRODUCTION

In the age of big data, owners of sensitive data may

autonomously join and form an emerging data-federation

platform, referred to as a private-information network (PIN).

For instance, Health-care Information Networks emerge at the

levels of federal government [1], states [2], and regions [3],

where different hospitals and clinical centers connect local

databases of patient electronic health records in the hope of

sharing data for better patient treatment. PINs emerge for

many other new applications, such as global enterprise com-

puting (e.g. Google’s Spanner [4] databases across multiple

countries [5]), cross-department data sharing in SmartCity,

genome data-sharing (e.g. Beacon Network1), and financial

data exchange [6].

The value of these private information networks stems

from the global dataset and the possible new knowledge or

insights that can be extracted from them. For instance, the

global dataset of patient medical records is stored across many

hospitals, and allows one to obtain the full medical history of

the patient of interest.

The key barrier to realizing the value of PINs is the privacy

concern on sharing data across the trust boundary. In a PIN,

data sharing has to be in compliance with data protection laws

(HiPAA2) and ethically speaking, it should also respect data

1https://genomicsandhealth.org/files/public/Beacon-FAQ.pdf
2http://www.gpo.gov/fdsys/pkg/CFR-2010-title45-vol1/pdf/

CFR-2010-title45-vol1-sec164-502.pdf

owners’ concerns on possible privacy leakage. The protocols

of secure multi-party computation (MPC [7], [8]) provide a

promising approach to protect data privacy in PINs. Briefly, the

purpose of an MPC is to evaluate some function on multiple

private inputs held by different parties, and to disclose only

the final output without leaking the private inputs (and any

intermediate results).

In this paper, we address the problem of decentralizing

MPC across nodes in a social network so as to minimize the

risk of collusion between nodes while retaining performance

efficiency. There is a tradeoff between risk minimization and

performance efficiency. On the one hand, when the MPC is ex-

ecuted on a small group of nodes (i.e. under-decentralized), the

risk of convincing all computing nodes to collude is high but

running the MPC at small scale leads to efficient performance.

On the other hand, overly decentralizing the MPC to the entire

large-scale social network can sufficiently decentralize trust

and minimize the risk of collusion, but at the expense of

increasing performance overhead. To strike a balance between

the two ends, our observation is that the tradeoff is not

linearly proportional; for instance, scaling down an overly-

decentralized MPC does not necessarily lead to increased risk

of collusion. If one knows social relationship, the unnecessary

decentralization can be avoided on social friends who might

collude. Hence for the best efficiency-security tradeoff, the

decentralization is applied only to non-friends whose chance

to collude is low. In other words, the awareness of social

relationship presents us a “free” performance optimization

opportunity, in the sense of being free of security degradation.

The key challenge in realizing the social-aware MPC decen-

tralization is uncertainty nature of social user behavior, par-

ticularly in terms of forming collusion. We propose to model

the risk of collusion by the likelihood of two probabilistic

events both happening: 1) each MPC node being dishonest,

and 2) MPC nodes being acquaintance, thus making it possible

for them to “collaborate.” The latter factor is further modeled

by the “closeness” of the MPC nodes in the social network

– the intuition is that if MPC nodes are acquaintances or

closely connected, it is more likely that they will collude. We

propose a fully quantifiable framework for modeling the risk

of collusion and applying the model to the problem of MPC

decentralization.

While there is a large body of research on secure multi-

party computations [7], [?], [8], [?], [?], [9], [10], there are



relatively few works focusing on minimizing the use of MPC

with awareness to application features, such as social trust

relationships. To the best of our knowledge, this is the first

work that leverages the social connections to minimize the

risk of collusion and the use of MPC for privacy-preserving

big-data computation.

II. RESEARCH FORMULATION

A. Motivating application scenarios

Our proposed work on MPC decentralization can be moti-

vated by the applications of running secure computations in

real-world large-scale P2P networks.

In P2P and grid computing, a data owner of a sensitive

dataset wants to leverage the “free” resources in P2P com-

putation networks (e.g. SETI@Home3, Open Science Grid4),

but is reluctant to trust any specific individual peer who can

be arbitrary entity joining the ad-hoc P2P network. Instead,

it may be more practical to decentralize the trust among a

selected group of peers and execute the secure computation of

her data in the group.

In distributed social networks, such as Diaspora5 and

Twister6, social users are registered at their “home” host

servers which run autonomously and in different locations. The

host servers may want to collectively conduct joint analysis

over the global social dataset, yet they do not necessarily

trust each other in sharing their social user data. Running the

joint analysis on a single trusted third party (TTP) results

in centralized strong trust which is difficult in real life.

Running the joint analysis on all host servers, while effectively

decentralizing the trust, results in high performance overhead.

Appropriately decentralizing the trust, which does not sacrifice

security under collusion attacks, would greatly improve the

performance. Such proper level of trust decentralization can be

made possible by the awareness of the social relationships; for

instance, decentralizing the computation between two social

nodes is only necessary when the two nodes/users do not have

social relationship.

In Cryptocurrency (e.g. BitCoin7), the public Blockchain

P2P network runs in a marketplace among buyers and sellers

and its miner subnetwork functions as transaction ledger

and arbitrator (by running a consensus protocol). The buyer-

seller relationship can be leveraged to execute the multi-

party Blockchain consensus computation among a subset of

miners, rendering efficiency. The intuition is that running

the protocol in a selected subnetwork may achieve the same

security level against collusion attacks with running that in the

entire network, while the cost of the former is much lower.

In the social web browsers (e.g. Chrome where the browser

is bundled with social user identity), end users’ data are

3https://setiathome.berkeley.edu/
4https://www.opensciencegrid.org/
5https://www.joindiaspora.com/
6http://twister.net.co/
7https://bitcoin.org/en/

collected and statistics about them are calculated in a privacy-

preserving fashion [11]. Decentralizing the statistics com-

putation among the entire “Chrome” user population would

be prohibitively expensive and unnecessary even in security.

Given the social relationship, decentralizing the secure com-

putation can be constraint to a selected sub-population such

that the security under collusion attacks is not sacrificed while

it improves performance and scalability.

While there are many other similar scenarios, the common

paradigm is that secure computation (in confidentiality and/or

integrity) over sensitive data is executed on a decentralized

P2P computing platform where the “social” relationship be-

tween nodes/users is known. Centralized trust by running the

computation on a single node is impractical and unsecured.

Overly decentralized trust by running the computation over

the entire large-scale network is also impractical in the sense

of performance inefficiency and inscalability. By awareness of

the trust relationship, our goal is to find a subset of social

nodes to execute the secure P2P computation (or MPC) in

such a way that the scalability is improved while retaining the

same level of security with the entire-network computation. In

the following, we formally describe the model of our system

to pave the way of formulating the MPC-decentralization

problem.

B. The MPC-Decentralization Problem

Data/system model: In our system model, there is a

network of N social sites GN , each representing one or

more social users. There are social edges between the sites

representing the underlying social network.

In our data model, the social graph among the N social sites

is publicly known, though the social users’ profile data is not

necessarily public. Meanwhile, there is private data on which

the secure computation is run. The private data can be any

arbitrary dataset depending on the application. For instance, in

the privacy-preserving distributed social networks, the private

data is social users’ data itself. In the P2P networks, it is the

owner’s private data.

MPC decentralization is about selecting a subgraph of the

social network to run the MPC protocol on the private dataset.

Suppose an MPC subgraph S of M nodes is selected from

GN . When running MPC on S, the private data is split into

M shares and sent to the M nodes. Then a protocol of MPC,

such as GMW [8], will be executed on the M shares/sites.

While there are exponentially many ways to choose S given

GN , we aim at producing a “good” MPC subgraph in two

senses: First , it should not be risky to execute an MPC; in

other words, it is unlikely that all nodes in the MPC subgraph

will collude, so the security of MPC can be ensured. Second,

the cost of running MPC in the selected subgraph should be

affordable. The cost of running MPC is an active research

topic of its own [12], and we use the simplest heuristic in this

paper, which is to bound the number of nodes to be smaller

than a predefined threshold value, C. We focus on modeling

the risk component in this work. To do that, we formalize our

security definition.



Security definition: In the MPC phase, we consider the

semi-honest model for nodes in S, where each party follows

the prescribed computation process but is curious about the

data flowing through the process. Such intermediate-result

data is used to guess what (sensitive) value the original input

takes. MPC nodes in S (or more generally GN ) may collude

to gain advantage in improving the probability of correctly

guessing the data values. Our security goal is that any social

user (either participating in MPC or not) who is semi-honest

and observes computation data, cannot gain non-negligible

advantage in guessing the secret input values. This follows the

classic computational security of MPC [13]. In other words,

our security goal is to meet the assumptions made in MPC

protocol.

One key assumption in an MPC protocol is regarding how

much collusion the protocol can tolerate. While different

protocols are designed to tolerate different levels of colluding

attacks, all protocols are broken if all nodes in S collude. This

condition is the basis of modeling risk in our problem. That

is, minimizing the risk of decentralizing MPC in S is modeled

by minimizing the probability that all nodes in S collude.

Ideally, when it is known which subset of nodes in GN

are colluding, calculating the collusion probability w.r.t. S
becomes trivial, which is as simple as determining if all nodes

in S are among these colluding nodes. However, in reality,

the set of collusion nodes are unknown and hidden from the

public. With the only known information being the social

graph structure, the collusion probability can be estimated by

following intuition: Each social user has her own probability

of being dishonest and collusion occurs only among dishonest

social users. The more closely connected these dishonest social

users are in the social graph, the more likely a collusion is

formed among them.

III. PROPOSED APPROACH

In this section, we propose a collusion model that uses

node honesty probabilities as well as the structure of the

chosen subgraph to estimate the risk of collusion. We as-

sume that each node u has an associated weight wu =
− logPr[u is dishonest] representing the probability that u
is dishonest. If nodes act independently, the probability of

all nodes in a subgraph being dishonest is thus given by

ΠuPr[u is dishonest] = 2−
∑

u
wu .

However, because it is not reasonable to believe that nodes

make collusion decisions independently, we define the col-

lusion score of subgraph SN as its density. The density of

a subgraph is the number of edges in the subgraph divided

by the maximum possible number of edges in the subgraph

( 1
2
n(n − 1), where n is the number of nodes in the sub-

graph). Intuitively, nodes in a high-density subgraph are well-

connected to one another, and so are more likely to collude. We

thus aim to find a low-density subgraph to minimize the risk

of collusion. Formally, we model the MPC decentralization

problem as the Minimum-Density Network-MPC problem,

denoted by MDN-MPC.

!"##$%&"'((

%)"*+(,(-./(

!"##$%&"'((

%)"*+(,(-.01(

!"##$%&"'((

2)"*+(,(-(

!
"
(,(-.3(

(

!
"
(,(-.4(

#

2+#+)5+6(

Fig. 1. An example with R = 1.5, C = 4. By choosing nodes appropriately,
one can select a subgraph with collusion score 0.

Minimum-Density Network MPC (MDN-MPC): Suppose

that one is given a graph GN where each node u has weight

wu, and constants C,R > 0. Find a set SM = {u1, ..., uM},

where n ≤ C and wu1
+...+wuM

≥ R, such that the collusion

score of the subgraph induced by SM in GN is minimized.

Here, C represents the cost constraint: we cannot divide

the computation among too many nodes, or communication

costs become prohibitively large. R represents a budget of

risk of nodes being dishonest; in total, the joint probability

that all nodes are dishonest should be bounded by R. That is,∑
u wu ≥ R is equivalent to ΠuPr[u is dishonest] ≤ 1/2R.

First, we show that the MDN-MPC problem is NP-Hard.

Thus, it is not possible to create a fast algorithm to solve

this problem exactly. We then present three heuristics: The

first is a naive method that does not take graph structure into

account. The second method is a greedy algorithm that updates

its evaluation of each node in each iteration. As we will see in

Section IV, this method is effective but slow. The third method

is a faster greedy algorithm that performs fewer updates, and

is faster but still effective.

A. Hardness of MDN-MPC

Theorem: MDN-MPC is NP-Hard.

Proof: We prove that MDN-MPC is NP-Hard via a re-

duction from INDEPENDENT SET. The INDEPENDENT SET

problem is as follows: Given an undirected graph G and an

integer k > 0, is there a set of k nodes H ∈ G such that no

two nodes in H are adjacent to one another? INDEPENDENT

SET is known to be NP-Complete.

INDEPENDENT SET reduces to MDN-MPC in polynomial

time as follows: Suppose one is given a graph GIS and

constant k as input to Independent Set. Suppose that one

has an algorithm to solve MDN-MPC, which takes as input

a weighted graph GMDN , and constants C,R > 0. Set

GMDN = GIS , and set all node weights equal to 1. Set



R,C = k. Then GIS has an independent set of size k if

and only if the set found by the MDN-MPC algorithm has

density 0.

Because all nodes in GMDN have weight 1, in order for

the MDN-MPC algorithm to meet the risk constraint given

by R = k, it must select at least k nodes. The constraint

C = k ensure that it will select no more than k nodes. The

algorithm will thus find the minimum-density set of k nodes.

Density cannot be less than 0, and a set of density 0 has no

edges, so is an independent set. Thus, if the graph contains

an independent set of size k, the graph contains a set of size

k with density 0. The MDN-MPC algorithm will thus find a

0-density set of k nodes, which is an independent set of size k.

Likewise, if the MDN-MPC algorithm finds a set of density

0, this set is an independent set.

B. Algorithms for MDN-MPC

First, suppose that we remove the density requirement from

the MDN-MPC problem, so we just wish to find a set of at

most C nodes with at least R total weight. This can trivially

be solved by Algorithm 1:

Algorithm 1: Naive Greedy. Sort the nodes in descending

order by their weight. Return the first C nodes in this list.

The Naive Greedy algorithm serves as a baseline, in the

sense that it provides an upper bound on the density we should

expect.

Algorithm 2: Slow Greedy. Initialize set S = ∅. In each

iteration i, calculate Ri, the weight still needed to meet the

risk constraint (given by R minus the sum of the wu values

so far), and Ci, the amount of nodes that may still be added

(given by C minus the number of nodes currently in S). For

each node u not in S, if wu ≥ Ri

Ci
, calculate du, the number

of connections u has to nodes in S. Let ru = wu

Ridu
. Find the

node with the largest ru value, and add it to S.

The Slow Greedy algorithm builds set S one node at a time.

In each iteration, it calculates the required minimum average

weight of a node added to the set as follows: If Ri weight

is still needed to meet the R risk constraint, and only Ci

nodes can still be added to S, then the added nodes must

have at least Ri

Ci
weight on average. In each iteration, the

algorithm generates a list of candidate nodes u with weight

wu ≥ Ri

Ci
. It then selects the candidate node with the highest

ru score, which is calculated from its wu value as well as

the number of connections that it has into the current set

S (fewer connections are better). This algorithm finds low-

density sets, but because the node scores must be updated

after every iteration, it can be slow.

Algorithm 3: Fast Greedy. For each node u, calculate u’s

degree du (i.e., the number of neighbors that u has), and

how much it can contribute toward the risk constraint, wu

R
.

Calculate the ratio ru of its contribution to its degree: wu

Rdu
.

Sort the nodes in descending order of their ru scores. Let uj

represent the node in position j of this list. Iterate through this

list. In each iteration i, calculate Ri, the amount of weight

still needed, and Ci, the number of nodes that can still be

added (given by C minus the number of nodes added so far).

If wuj
≥ Ri/Ci, add uj to the set of selected nodes.

The Fast Greedy algorithm is similar to the Slow Greedy

algorithm, except that instead of calculate the number of

connections that a node has into the current set S, it only

looks at each node’s total degree du. This way, each node is

scored only once, allowing for a substantial improvement in

running time.

IV. EXPERIMENTS

In this section, we describe our experimental results. We see

that the Naive Greedy method runs very quickly, but because

it does not take network structure into account, fails to find sets

of nodes with low collusion scores. The Slow Greedy method

is very effective at finding sets of nodes with low collusion

scores, but is extremely slow on large networks. The Fast

Greedy method finds sets of nodes that are almost as good as

those found by Slow Greedy, but is much faster.

A. Experimental Setup

Datasets: We consider the following four datasets: Grad

and Ugrad are portions of the Facebook network correspond-

ing to students at Rice University.8 Grad has 503 nodes and

6,512 edges, and Ugrad has 1,220 nodes and 86,416 edges.

Email is an e-mail network corresponding to a European

research institution. It has 986 nodes and 16,064 edges. Astro

is a scientific collaboration network, with edges representing

paper co-authorship. It has 18,772 nodes and 198,110 edges.9

Experimental Settings: We simulate dishonesty probabili-

ties in two ways: uniformly at random over the interval [0.01,

0.99] and by the normal distribution with a mean of 0.5 and

standard deviation of 0.2, trimmed to the interval [0.01, 0.99].

We then assign node weights by taking the negative log of the

dishonesty probabilities. A high weight indicates that a node

has a low probability of being dishonest, and so is good to

include.

We set C (the maximum number of nodes selected) to be

one half of the number of nodes in the graph and R (the risk

constraint) to be one quarter of the number of nodes in the

graph (though one may end up selecting more or fewer nodes

than this, depending on their weights).

B. Results

For each algorithm, dataset, and risk distribution (uniform

random or normal), we present (1) the total number of nodes

selected, (2) the density of the resulting subgraph, and (3)

the running time of the algorithm. Results are summarized in

Tables I and II.

From these results, we observe that the Naive Greedy

method, as expected, is very fast, but because it does not

use graph structure, it selects nodesets with high collusion

scores; in other words, the nodes selected by Naive Greedy

meet the risk and cost constraints, but are likely to collude.

The Slow Greedy method finds extremely sets of nodes with

8Obtained from Alan Mislove.
9Email, Astro obtained from http://snap.stanford.edu.



Network C R Method Num. Collusion Run.
Nodes Score Time (s)

Naive Greedy 59 3.0e-2 0.02
Grad 251 125 Slow Greedy 77 0.0 0.10

Fast Greedy 98 5.2e-3 0.02

Naive Greedy 161 5.7e-2 0.39
Ugrad 610 305 Slow Greedy 248 6.9e-3 1.4

Fast Greedy 226 1.2e-2 0.38

Naive Greedy 144 3.2e-2 1.2
Email 493 246 Slow Greedy 444 1.7e-3 2.1

Fast Greedy 191 0.0 1.7

Naive Greedy 2,513 1.0e-3 2.1
Astro 9,386 4.693 Slow Greedy 2,985 1.1e-6 202.4

Fast Greedy 4,146 1.0e-4 2.37

TABLE I
EXPERIMENTAL RESULTS FOR NORMALLY-DISTRIBUTED DISHONESTY

PROBABILITIES

Network C R Method Num. Collusion Run.
Nodes Score Time (s)

Naive Greedy 40 2.4e-2 0.02
Grad 251 125 Slow Greedy 43 0.0 0.06

Fast Greedy 62 5.3e-3 0.03

Naive Greedy 98 4.9e-2 0.35
Ugrad 610 305 Slow Greedy 171 2.4e-3 0.98

Fast Greedy 146 1.1e-2 0.47

Naive Greedy 78 4.1e-2 1.3
Email 493 246 Slow Greedy 94 0.0 1.4

Fast Greedy 171 4.8e-4 1.4

Naive Greedy 1,483 1.0e-3 1.9
Astro 9,386 4.693 Slow Greedy 1,625 2.3e-6 96.7

Fast Greedy 2,483 9.4e-5 2.0

TABLE II
EXPERIMENTAL RESULTS FOR UNIFORMLY RANDOM-DISTRIBUTED

DISHONESTY PROBABILITIES.

extremely low collusion scores that are usually at least an order

of magnitude lower than those found by the baseline Naive

Greedy method. But Slow Greedy is prohibitively slow: for

the Astro dataset, containing 18,772 nodes, Slow Greedy took

up to over 3 minutes to select appropriate nodes. This method

will clearly be inappropriate for networks with hundreds of

thousands or millions of nodes. The Fast Greedy method

is usually almost as fast, or faster than, the Naive Greedy

method, but still finds sets of nodes with low collusion scores.

These results hold across both types of risk distribution.

V. RELATED WORK

Secure multi-party computation (MPC) has been a focus of

theoretic research since the 80s [7], [8], and the last decade

has seen a rise in systems-oriented research on MPC. This

body of research supports programming tools and runtime

systems for MPC, such as MPC compilers [14], [15] and MPC

execution engines [16], [17]. Such systems usually follow

proven secure protocols for MPC, such as Yao’s Garbled

Circuit [7], GMW [8], SPDZ [9], etc. Privacy-preserving

data mining [18], [19] leverages domain-specific construct to

secure a certain kind of data-mining computation. In particular,

privacy-preserving indexes and locator services are proposed

to redirect queries to the end data owners in a secure way [20],

[21]. Our research builds on top of MPC systems with a

particular concern on exploiting query-specific semantics.

Another line of related research is designing scalable P2P

networks. A graph-theoretic approach is to design a scalable

overlay on the distributed hash table abstraction (DHT) of

the P2P network. Many proposed DHT overlays, such as

Chord [22], are based on Plaxton Mesh topology. Others, such

as CAN [23] leverages d-torus topology. Data management

layer, such as secondary-index support [24], has been added

to the key-value store of DHT, in the hope of supporting

more complex and expressive computations such as range

queries [25], multi-dimensional queries [26], [27], etc.

VI. CONCLUSIONS

We have considered the problem of decentralizing MPC

across nodes in a social network, with the goal of minimizing

the risk of collusion between nodes. To our knowledge, we

are the first to consider this problem, which has applications

in areas such as peer-to-peer computing and privacy-preserving

distributed social networks. We presented a model in which

each node is assigned a weight related to its probability of

being dishonest, and then presented the MINIMUM-DENSITY

NETWORK MPC (MDN-MPC) problem.

In this problem, one is given a positively-weighted graph

G, and positive constants C and R. The goal is to select no

more than C nodes from G such that the sum of their weights

is at least R, and the density of the subgraph induced by the

nodes is minimized. We presented a fast greedy algorithm to

find appropriate subgraphs, and showed that it achieved good

results on several real datasets.

This work is preliminary, and we hope that it encourages

other work along these lines. There are many open topics to ex-

plore. For instance, there are many alternatives to density that

one might use, including path-based characteristics, clustering

of the nodes, etc. Many of the problem formulations suggested

by these alternatives are likely to be NP-Hard, but there may

be provably-good greedy algorithms for approximating the

optimal solution. We are additionally interested in exploring

problems in which there are additional constraints on the

nodes, such as minimum total resource requirements.

REFERENCES

[1] “Nwhin: http://www.hhs.gov/healthit/healthnetwork.”

[2] “Shin-ny: http://www.health.ny.gov/technology/projects/.”

[3] “Healtheconnections rhio: http://www.healtheconnections.org/rhio.”

[4] J. C. Corbett, J. Dean, M. Epstein, A. Fikes, C. Frost, J. J. Furman,
S. Ghemawat, A. Gubarev, C. Heiser, P. Hochschild, W. C. Hsieh,
S. Kanthak, E. Kogan, H. Li, A. Lloyd, S. Melnik, D. Mwaura,
D. Nagle, S. Quinlan, R. Rao, L. Rolig, Y. Saito, M. Szymaniak,
C. Taylor, R. Wang, and D. Woodford, “Spanner: Google’s globally
distributed database,” ACM Trans. Comput. Syst., vol. 31, no. 3, p. 8,
2013. [Online]. Available: http://doi.acm.org/10.1145/2491245

[5] A. Vulimiri, C. Curino, P. B. Godfrey, T. Jungblut, J. Padhye, and
G. Varghese, “Global analytics in the face of bandwidth and regulatory
constraints,” in 12th USENIX Symposium on Networked Systems

Design and Implementation, NSDI 15, Oakland, CA, USA, May 4-6,

2015, 2015, pp. 323–336. [Online]. Available: https://www.usenix.org/
conference/nsdi15/technical-sessions/presentation/vulimiri



[6] A. Narayan, A. Papadimitriou, and A. Haeberlen, “Compute
globally, act locally: Protecting federated systems from systemic
threats,” in 10th Workshop on Hot Topics in System

Dependability, HotDep ’14, Broomfield, CO, USA, October 5,

2014., 2014. [Online]. Available: https://www.usenix.org/conference/
hotdep14/workshop-program/presentation/narayan

[7] A. C. Yao, “How to generate and exchange secrets (extended abstract),”
in 27th Annual Symposium on Foundations of Computer Science,

Toronto, Canada, 27-29 October 1986, 1986, pp. 162–167. [Online].
Available: http://dx.doi.org/10.1109/SFCS.1986.25

[8] O. Goldreich, S. Micali, and A. Wigderson, “How to play any
mental game or A completeness theorem for protocols with honest
majority,” in Proceedings of the 19th Annual ACM Symposium

on Theory of Computing, 1987, New York, New York, USA,
A. V. Aho, Ed. ACM, 1987, pp. 218–229. [Online]. Available:
http://doi.acm.org/10.1145/28395.28420

[9] I. Damgård, M. Keller, E. Larraia, V. Pastro, P. Scholl, and N. P.
Smart, “Practical covertly secure MPC for dishonest majority - or:
Breaking the SPDZ limits,” in Computer Security - ESORICS 2013 -

18th European Symposium on Research in Computer Security, Egham,

UK, September 9-13, 2013. Proceedings, 2013, pp. 1–18. [Online].
Available: http://dx.doi.org/10.1007/978-3-642-40203-6 1

[10] G. Cohen, I. B. Damgård, Y. Ishai, J. Kölker, P. B. Miltersen, R. Raz,
and R. D. Rothblum, “Efficient multiparty protocols via log-depth
threshold formulae - (extended abstract),” in Advances in Cryptology -

CRYPTO 2013 - 33rd Annual Cryptology Conference, Santa Barbara,

CA, USA, August 18-22, 2013. Proceedings, Part II, 2013, pp. 185–202.
[Online]. Available: http://dx.doi.org/10.1007/978-3-642-40084-1 11

[11] Ú. Erlingsson, V. Pihur, and A. Korolova, “RAPPOR: randomized
aggregatable privacy-preserving ordinal response,” in Proceedings of

the 2014 ACM SIGSAC Conference on Computer and Communications

Security, Scottsdale, AZ, USA, November 3-7, 2014, 2014, pp. 1054–
1067. [Online]. Available: http://doi.acm.org/10.1145/2660267.2660348

[12] A. Ben-Efraim, Y. Lindell, and E. Omri, “Optimizing semi-honest secure
multiparty computation for the internet,” in Proceedings of the 2016

ACM SIGSAC Conference on Computer and Communications Security,

Vienna, Austria, October 24-28, 2016, E. R. Weippl, S. Katzenbeisser,
C. Kruegel, A. C. Myers, and S. Halevi, Eds. ACM, 2016, pp. 578–590.
[Online]. Available: http://doi.acm.org/10.1145/2976749.2978347

[13] O. Goldreich, The Foundations of Cryptography - Volume 2, Basic

Applications. Cambridge University Press, 2004.
[14] A. Rastogi, M. A. Hammer, and M. Hicks, “Wysteria: A programming

language for generic, mixed-mode multiparty computations,” in 2014

IEEE Symposium on Security and Privacy, SP 2014, Berkeley, CA,

USA, May 18-21, 2014, 2014, pp. 655–670. [Online]. Available:
http://dx.doi.org/10.1109/SP.2014.48

[15] E. M. Songhori, S. U. Hussain, A. Sadeghi, T. Schneider, and
F. Koushanfar, “Tinygarble: Highly compressed and scalable sequential
garbled circuits,” in 2015 IEEE Symposium on Security and Privacy,

SP 2015, San Jose, CA, USA, May 17-21, 2015, 2015, pp. 411–428.
[Online]. Available: http://dx.doi.org/10.1109/SP.2015.32

[16] X. S. Wang, Y. Huang, T. H. Chan, A. Shelat, and E. Shi, “SCORAM:
oblivious RAM for secure computation,” in Proceedings of the 2014

ACM SIGSAC Conference on Computer and Communications Security,

Scottsdale, AZ, USA, November 3-7, 2014, 2014, pp. 191–202. [Online].
Available: http://doi.acm.org/10.1145/2660267.2660365

[17] S. G. Choi, K. Hwang, J. Katz, T. Malkin, and D. Rubenstein, “Secure
multi-party computation of boolean circuits with applications to privacy
in on-line marketplaces,” in Topics in Cryptology - CT-RSA 2012 - The

Cryptographers’ Track at the RSA Conference 2012, 2012, pp. 416–432.
[18] J. Vaidya and C. Clifton, “Privacy preserving association rule mining in

vertically partitioned data,” in Proceedings of the Eighth ACM SIGKDD

International Conference on Knowledge Discovery and Data Mining,

July 23-26, 2002, Edmonton, Alberta, Canada, 2002, pp. 639–644.
[Online]. Available: http://doi.acm.org/10.1145/775047.775142

[19] M. Kantarcioglu and C. Clifton, “Privacy-preserving distributed mining
of association rules on horizontally partitioned data,” IEEE Trans.

Knowl. Data Eng., vol. 16, no. 9, pp. 1026–1037, 2004.
[20] Y. Tang and L. Liu, “Privacy-preserving multi-keyword search in infor-

mation networks,” IEEE Trans. Knowl. Data Eng., vol. 27, no. 9, pp.
2424–2437, 2015.

[21] Y. Tang, L. Liu, A. Iyengar, K. Lee, and Q. Zhang, “e-ppi: Locator
service in information networks with personalized privacy preservation,”
in ICDCS. IEEE Computer Society, 2014, pp. 186–197.

[22] I. Stoica, R. Morris, D. R. Karger, M. F. Kaashoek, and H. Balakrishnan,
“Chord: A scalable peer-to-peer lookup service for internet applications,”
in SIGCOMM, 2001, pp. 149–160. [Online]. Available: http://doi.acm.
org/10.1145/383059.383071

[23] S. Ratnasamy, M. Handley, R. M. Karp, and S. Shenker, “Application-
level multicast using content-addressable networks,” in Networked

Group Communication, Third International COST264 Workshop, NGC

2001, London, UK, November 7-9, 2001, Proceedings, 2001, pp. 14–29.
[Online]. Available: http://dx.doi.org/10.1007/3-540-45546-9 2

[24] Y. Tang and S. Zhou, “LHT: A low-maintenance indexing scheme over
dhts,” in ICDCS. IEEE Computer Society, 2008, pp. 141–151.

[25] Y. Tang, S. Zhou, and J. Xu, “LIGHT: A query-efficient yet low-
maintenance indexing scheme over dhts,” IEEE Trans. Knowl. Data

Eng., vol. 22, no. 1, pp. 59–75, 2010.
[26] Y. Tang, J. Xu, S. Zhou, and W. Lee, “m-light: Indexing multi-

dimensional data over dhts,” in ICDCS. IEEE Computer Society, 2009,
pp. 191–198.

[27] Y. Tang, J. Xu, S. Zhou, W. Lee, D. Deng, and Y. Wang, “A lightweight
multidimensional index for complex queries over dhts,” IEEE Trans.

Parallel Distrib. Syst., vol. 22, no. 12, pp. 2046–2054, 2011.
[28]


