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A Separability Framework for Analyzing Community Structure
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Four major factors govern the intricacies of community extraction in networks: (1) the literature offers a
multitude of disparate community detection algorithms whose output exhibits high structural variability
across the collection, (2) communities identified by algorithms may differ structurally from real communi-
ties that arise in practice, (3) there is no consensus characterizing how to discriminate communities from
noncommunities, and (4) the application domain includes a wide variety of networks of fundamentally dif-
ferent natures. In this article, we present a class separability framework to tackle these challenges through
a comprehensive analysis of community properties. Our approach enables the assessment of the structural
dissimilarity among the output of multiple community detection algorithms and between the output of algo-
rithms and communities that arise in practice. In addition, our method provides us with a way to organize
the vast collection of community detection algorithms by grouping those that behave similarly. Finally, we
identify the most discriminative graph-theoretical properties of community signature and the small subset of
properties that account for most of the biases of the different community detection algorithms. We illustrate
our approach with an experimental analysis, which reveals nuances of the structure of real and extracted
communities. In our experiments, we furnish our framework with the output of 10 different community
detection procedures, representative of categories of popular algorithms available in the literature, applied
to a diverse collection of large-scale real network datasets whose domains span biology, online shopping,
and social systems. We also analyze communities identified by annotations that accompany the data, which
reflect exemplar communities in various domain. We characterize these communities using a broad spectrum
of community properties to produce the different structural classes. As our experiments show that commu-
nity structure is not a universal concept, our framework enables an informed choice of the most suitable
community detection method for identifying communities of a specific type in a given network and allows for
a comparison of existing community detection algorithms while guiding the design of new ones.
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1. INTRODUCTION

Community structure captures the tendency of entities in a network to group together
in meaningful subsets whose members have a distinctive relationship to one another.
The identification of these subsets allows for the analysis of networks at different levels
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5:2 B. Abrahao et al.

Fig. 1. Six different communities of 100 nodes each, identified on the LiveJournal network through different
methods, namely Metis, Annotated Community, Random Walk, Infomap, Newman-Modularity, and Louvain.
The communities comprise different node sets of the network, which were displayed by applying the same
network layout algorithm. The visual diversity of the collection provides a rough and ready illustration of the
structural variability that can be produced by the different methods. To aid the identification of structural
nuances, the lightness of the red node colors reflect node degree, from fully illuminated (low degree) to dark
(high degree).

of detail, which is instrumental in illuminating the structure underlying large-scale
systems [Chung 1996; Fortunato 2010; Girvan and Newman 2002a; Newman 2004,
2006].

Despite playing a fundamental role in the structure and function of networks, com-
munity structure has proved to be frustratingly difficult to define, quantify, and extract.
In addition to challenges related to computational tractability, four major factors ac-
count for the intricacies of community extraction.

First, the literature offers a multitude of disparate community detection algorithms.
Due to differences in concept and design, the output of these procedures exhibits high
structural variability across the collection. Given the diverse nature of networks, the
notion of meaningful communities is necessarily context dependent, involving inter-
pretations and expectations of domain experts. Therefore, many attempts to define
communities are grounded on the notion of mathematical optimization. Starting with
an a priori expectation about what a community should look like, researchers specify an
objective function for a search problem whose solution provides the desired communi-
ties. This process has given rise to a large collection of community detection algorithms,
each aiming at optimizing a particular objective function through a particular heuris-
tic. As an illustration, Figure 1 shows six communities of size 100 extracted from
the same network (the LiveJournal network, see Section 4.1), by different methods,
namely Metis, Random Walk, Infomap, Newman-Modularity, and Louvain (described
in Section 4.2.1) and one community of that network identified by data annotation.
By visually inspecting these examples, we can see that even with this limited number
of examples and despite the varying network layouts (which were a product of the
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application of the same network layout algorithm to the subnetworks) the structural
variability produced by the different methods is readily apparent. For example, some of
the communities exhibit a dense, compact core, such as those extracted by the Infomap
and the Louvain methods, whereas others spread along “tendrils” consisting of long
paths of low-degree nodes that connect small clusters, such as the communities labeled
as Metis, Random Walk, and Newman modularity. The annotated community, on the
other hand, seems to posses a sparse core, including a larger number of low-degree
nodes that spread on its periphery.

Second, communities in real networks often emerge as a result of multiple driving
forces that make up the underlying complex system. Therefore, an attempt to capture
community structure by maximizing a given objective function may represent an un-
realistic expectation. As a consequence, communities identified by methods that reflect
mathematical constructs may differ structurally from real communities that arise in
practice.

Third, there is no established consensus on the question of what properties distin-
guish subgraphs that are communities from those that are not communities. Although
we can examine examples of community structure (e.g., by asking experts to identify
communities in a given domain), we can only characterize a population in the presence
of negative examples. However, finding negative examples of community structure is
a challenging task. Any other subset of nodes in the network that is not explicitly
identified as a community is a potential negative example; however, in large net-
works, exhaustively enumerating all forms of negative examples is computationally
intractable. Moreover, even if we could enumerate every other set in the network, we
are still faced with the possibility that these seemingly negative examples could also
be valid communities that were simply not identified by the expert.

Last, the application domain includes a wide variety of networks of fundamentally
different natures. Each of these networks contains meaningful communities that may
possess their own distinctive structural profiles.

In this article, we present a framework to tackle these challenges through a com-
prehensive characterization of community properties. By using different notions of
communities as references, our methodology enables the analysis of community struc-
ture without requiring the identification of negative examples. Our method presents
a scalable framework that enables researchers to assess the structural dissimilarity
among the output of new and existing community detection algorithms, and between
the output of algorithms and communities that arise in practice. The analysis may
guide the design of novel community detection procedures. Given the significant struc-
tural variability among the output of different algorithms (which we established in our
experimental analysis, introduced at the end of this section and discussed in Section 5),
our framework serves as a tool for practitioners to decide on the most suitable algorithm
for identifying communities of a specific structure in a given network. The intended
structure can be specified by producing examples of communities that are either rep-
resentative of real communities in the network or possess the particular structural
features that we wish to find. Another dividend of our method is a way to organize the
menagerie of community structures that the collection of algorithms in the literature
exhibit. The framework exposes the tendencies produced by the different algorithms,
which allows us to group those that behave similarly. By complementing the approach
with a feature selection analysis, we are able to determine what graph-theoretical prop-
erties of a subgraph are the most discriminative of community signature and identify
those properties that account for most of the biases of the different community de-
tection algorithms. Finally, our approach can be used to study the consistency of the
output of algorithms across different networks.
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We frame our approach as a class separability problem, which is able to simultane-
ously handle a large number of classes of communities and a diverse set of structural
properties. To this end, we specify a learning problem in which we map the distinct
communities into a feature space, where the dimensions represent measures that char-
acterize a community’s link structure. The separability of classes provides information
on the extent to which different communities come from the same (or fundamentally
different) distributions of feature values.

The heart of our framework is the assessment of class separability. To this end, we use
traditional methods in machine learning, such as Scatter Matrices [Theodoridis and
Koutroumbas 2008]. In addition, to produce more fine-grained separability information,
we propose quantifying class separability through the cross-validation performance
of existing multiclass supervised classifiers, both parametric, namely Support Vector
Machines (SVMs) [Vapnik 1998], and nonparametric, namely k-Nearest Neighbors
(kNN) [Aha et al. 1991]. To study the most relevant properties to analyze communities,
we employ a feature selection analysis using a correlation-based method [Hall 1999].

In this work, we consider communities defined in two different ways and extract
different classes of communities that can be grouped into two main categories: intrin-
sically defined and extrinsically defined communities.

We define the first set of communities by properties intrinsic to their link structure.
For our purposes, these are the sets that are output by community detection algorithms.
Each class of intrinsically defined communities comprises a set of examples that a
specific algorithm extracts. The separability of these classes demonstrates the extent
to which different algorithms output structurally distinguishable subgraphs. A feature
selection analysis can then be employed to highlight the properties that exhibit the
highest degree of interclass variability, thereby making explicit the structural bias
produced by different algorithms.

We also define communities by the context, the dynamics, or the function associated
with the networks, but extrinsic to the link structure. We identify these communities
through meaningful annotations provided with the datasets, such as explicit declara-
tion of group membership, product categories, grouping by protein function, and so on.
In this fashion, for each network, we form a class of extrinsically defined communi-
ties, henceforth called annotated communities. These communities enable a large-scale
rigorous analysis of community detection methods. The separability of the class com-
prising annotated communities from the classes of intrinsically defined communities
determines the extent to which community detection algorithms succeed in extract-
ing subgraphs that are structurally comparable to the communities formed by nodes
sharing extrinsic properties in common.

An important question that arises in our framework is how to select a collection of
community classes that are independent enough to populate the feature space with
enough diversity. A space with these properties provides a strong reference to ana-
lyze the structure of communities based on structural diversity that other notions of
community exhibit. For this purpose, we propose the application of a pairwise Scatter
Matrix measurement [Theodoridis and Koutroumbas 2008] for analyzing class simi-
larity and determine which classes from a collection are redundant or independent.
Depending on the application, redundant classes can be merged or be represented in a
reduced collection by one representative.

We illustrate our approach with an experimental analysis, which reveals nuances of
the structure of real and extracted communities. In our experiments, we furnish our
framework with the output of 10 different community detection procedures, represen-
tative of categories of popular algorithms available in the literature, as well as with
annotated data, which reflect exemplar communities in various domains. We compre-
hensively characterize these examples, which we extract from large-scale real network
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data spanning diverse domains, such as biology, online shopping, and social systems,
using a broad spectrum of community properties.

In our experimental analysis, we reach the following conclusions about the com-
munities in question. First, for all networks, the strong cross-validation performance
indicates that the different community detection algorithms produce fundamentally
different structures that are separable on the feature space defined. Second, we ob-
serve that in nearly all cases, the annotated communities are structurally distinguish-
able from the output of all community detection algorithms. Nevertheless, a surprising
outcome reveals that the structure of annotated communities bears closest structural
resemblance to the output of simple procedures that encode little structure and were
originally included in our framework as baseline procedures, such as random walk
and breadth-first search. In addition, despite the diversity of the domains from which
our networks are drawn, this observation applies to all of the networks, except two
of them for which we have a small population size. Third, we show that the differ-
ent community detection algorithms produce structures that are not only consistent
within a network but are consistent even across networks. Finally, a small subset
of the features is consistently observed as the most discriminative. This observation
allows for a dimensionality reduction by a factor as large as 4, preserving an equiv-
alent 10-fold cross-validation performance. The most discriminative features identify
the graph-theoretical properties that account for most of the biases of the different
algorithms. In addition to considering class structure and separability, we show that
even though communities generated through the same method applied to different
networks resemble one another in important ways, they also have significant differ-
ences. We demonstrate that when considering only one community detection method
at a time, communities from different networks are highly separable. Even more in-
terestingly, we show that when a classifier is trained on examples produced from only
one specific community detection method, it can still identify which network other
communities came from, even when those communities were produced through other
methods.

This article is organized as follows: Section 2 discusses background information
and related work. Section 3 presents an overview of our framework. Section 4 intro-
duces the datasets we use, the algorithms we consider, and the measures we apply
to construct the feature space. Section 5 describes the heart of our framework and
presents an experimental analysis thereof. Next, Section 6 presents the structural
tendencies of communities through a feature selection analysis. Section 7 contains re-
sults of our network separability experiments. Finally, Section 8 offers our concluding
remarks.1

2. RELATED WORK

The work by Girvan and Newman [2002a] sparked a recent wave of interest in the
notion of community structure as a decomposition of a network that reflects meaningful
properties of the underlying system [Fortunato 2010]. Nevertheless, this area has its
roots in the related problem of graph partitioning, whose initial contributions date back
to the 1970s [Kernighan and Lin 1970].

As mentioned in the preceding section, the multitude of community structure defini-
tions is a source of high variability between the output of different community detection
algorithms. Among the objective functions introduced in previous work, the notion of
modularity [Girvan and Newman 2002a] has become an influential one. Modularity as-
signs high scores to communities whose internal edges outnumber the ones established
in expectation by a random-network model that preserves the degree distribution of

1Preliminary results appear in an earlier conference publication [Abrahao et al. 2012].
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the original network. Another notion, inspired by electrical networks, is that of con-
ductance [Chung 1996]. The conductance of a set S with complement SC is the ratio
of the number of edges connecting nodes in S to nodes in SC by the total number of
edges incident to S or to SC (whichever number is smaller). The common theme un-
derlying the preceding notions is the search for node sets that are internally cohesive
and yet sparsely connected to the rest of the network. Therefore, these measures tend
to penalize sets having a large number of edges crossing the set relative to the count
of internal edges.

Communities in general, however, display features that modularity and conductance
may not capture, such as a preponderance of links to the outside over internal links
and an arbitrary degree of overlap. This fact is substantiated by an investigation of
real networks revealing that they do not split well into low-conductance communi-
ties [Leskovec et al. 2008], as most networks are expander like [Hoory et al. 2006].
These considerations lead to the development of alternative definitions, such as (α, β)-
community [Mishra et al. 2008], and algorithms, such as Link Communities [Ahn et al.
2010] and Clique Percolation [Palla et al. 2005].

Despite the vast literature on community detection, the works of Ahn et al. [2010]
and Yang and Leskovec [2012], as well as ours, are among the few that attempt to
analyze the structural resemblance between communities extracted by algorithms and
annotated communities, which represent examples of meaningful communities in var-
ious domains.

Even though network analysts expect the output of the different algorithms to dis-
play dissimilar structural profiles due their conceptual diversity, the structural vari-
ability does not hinge simply on the choice of optimization problem. In most cases
of interest, the search for a collection of node sets that maximize a given objec-
tive function is computationally intractable [Fortunato 2010]. Therefore, in an at-
tempt to handle the massive scale of today’s networks, popular methods of commu-
nity detection rely on efficient heuristics. As a consequence, previous works have
quantified a significant output variability among different approximation algorithms
that aim at maximizing the exact same function [Lancichinetti and Fortunato 2009;
Leskovec et al. 2010].

Coscia et al. [2011] provide an excellent survey of modern community detection
algorithms, which proposes a useful categorization of the different methods based
on their definition. However, the authors do not include an experimental analysis to
estimate the output variability that algorithms in the same category exhibit, or an
assessment of whether the structures produced by these algorithms are faithful to the
communities that they aim to extract. Our work provides a framework that allows for
a comparison between algorithms empirically, based on their behavior when applied to
networks, without the need to understand their definition.

In the spirit of studying the structural variability exhibited by different algorithms,
closest to ours is the work of Leskovec et al. [2008], which discusses properties of
communities produced by multiple algorithms that aim at maximizing conductance.
They consider the values of a handful of features—for example, set compactness and
internal conductance—produced by different algorithms. In contrast, here we present
the first study that is simultaneously comprehensive with respect to the diversity of
structural properties, of domains, of algorithms, and of scale. To illustrate this point,
we demonstrate the applicability of our approach through the analysis of a collection
of different communities. We take account of a set of 36 features, measured from the
output produced by 10 different community detection processes. We derive our results
from a diverse collection of datasets from small- and large-scale networks arising from
multiple domains.
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3. FRAMEWORK OVERVIEW

The purpose of our framework is to assist researchers and practitioners in under-
standing the behavior of different community detection algorithms. Given the large
collection of community detection algorithms in the literature, we expect that different
methods might produce different outputs when given the same input. However, little
is understood about the dissimilarities among the output of different algorithms, and
as these methods optimize for different criteria and use different heuristics, they may
indeed search for fundamentally different types of communities. How can we under-
stand existing algorithms, and which methods should we use as comparisons against
new algorithms?

To answer this question, we need to understand what communities are and what
properties they possess. However, it is not clear that the community detection problem
is well defined, and different people may have very different notions of communities.
Moreover, the concept of community may not only vary from individual to individual
but also may be context and domain specific. For example, there is no reason to expect
that the communities in a social network would resemble the structure of those in
biological networks.

To address these issues, we can analyze real communities from different domains
as identified by domain experts, and by looking at these examples, we may attempt to
determine what properties they have. To identify these properties, one might exhaus-
tively enumerate all possible forms of noncommunities and compare these sets against
known communities. However, finding negative examples of community structure is
a challenging task. Any other subset of nodes in the network that is not explicitly
identified as a community is a potential negative example; therefore, in large net-
works, exhaustively enumerating all forms of negative examples is computationally
intractable. Moreover, even if we could enumerate every other set in the network, we
are still faced with the possibility that these seemingly negative examples could also
be valid communities that were simply not identified by the expert.

The traditional statistical characterization task demands a training set where we
distinguish communities from noncommunities. Given such data, we could then train
a binary classifier to distinguish between the two structures and use the output of com-
munity detection algorithms as the test set. The classifier would then tell us the extent
to which the output of some community detection algorithm resembles communities
or noncommunities. From this model, we would be able to extract the exclusive fea-
tures that communities possess and would better understand how well the algorithms
capture these properties, which can be used as a performance measure. However, as
discussed in the preceding paragraph, setting up this experiment is nontrivial due to
the absence of negative examples.

Our contribution in this work is to provide a way to overcome these challenging obsta-
cles in characterizing community structure by applying machine learning techniques
in unorthodox ways. The key idea in our approach is to eliminate the requirement of
presenting the classifier with negative examples by learning the structural distinction
among known community notions. We build a feature space that allows us to model
the problem as a separability framework [Fatemi-Ghomi et al. 1999; Theodoridis and
Koutroumbas 2008] by extracting a comprehensive set of features—that is, community
properties, using graph-theoretical concepts, from each example of community that we
have extracted. These examples of communities, which are labeled with the name of
the method used to identify them in networks, are then projected onto a feature space.
This experiment allows for any outcome between two extreme scenarios. The different
notions of communities that we want to study may encode and capture similar enough
structures so that the different classes would be hard to separate in a feature space,
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or at the other extreme, we might observe a clear separation of the classes in the fea-
ture space. The extent to which the classes are separable can be used as a measure
of dissimilarity among the different community notions considered. Given this model,
we can additionally assess the structural similarities of real communities with the
communities produced by some algorithm. Here we use the diversity of community
structures exhibited by different processes as references to understand other commu-
nity structures. This powerful framework allows us to assess the structural differences
among different notions of communities as well as to structurally assess the quality of
the output of algorithms with respect to real communities. Furthermore, we are able
to concurrently consider a broad spectrum of structural features in a scalable way.

In Section 4, we discuss how we build structural classes to use in the training and
test sets of the separability framework. In Section 5, we discuss how to set up the
separability experiments to answer the questions in which we are interested, such as
measuring the extent to which different structural classes, each containing labeled
examples of communities extracted by different algorithms (one structural class per
algorithm), are separable. Furthermore, the distance, in terms of interclass separa-
bility and intraclass dispersion, between the classes corresponding to the output of
community detection algorithms and the examples of real communities tells us which
algorithms produce communities that most closely resemble real communities. We also
discuss existing measures of class separability and propose the cross-validation per-
formance of classifiers as a measure. Finally, Section 6 concludes the presentation of
our framework with a method for reducing the dimensionality of the data to reveal the
most discriminative features on which the different algorithms load their biases. From
this analysis, we can compare the behavior of different algorithms in terms of a few
structural features.

4. BUILDING STRUCTURAL CLASSES

Our main goal is to capture the structural signature exhibited by different communities.
We do not know a priori the extent and the source of structural variability among
seemingly different communities. In addition, to answer the research questions posed
in the preceding section, we want to relate specific structural properties with the
methods that tend to produce them. To address this question, we divide the space
of known community examples into classes, each corresponding to the method that
generated or identified the instances therein contained. As we expect that the structural
tendencies of a given community identification method are going to be reflected by the
examples in its corresponding class, we refer to these classes as structural classes. This
denomination does not imply that the classes have distinctive structures. In fact, some
classes may be compact, exhibiting a clear signature, whereas others may exhibit high
variance that could be difficult to characterize. Moreover, multiple classes may overlap,
indicating that they contain somewhat similar structures. Accordingly, the purpose of
the class separability measures proposed here is to assess the structural dissimilarity
among the structural classes that we consider.

Before describing our framework and delving into our analysis, in this section we
present the datasets that we use, as well as our methodology for building structural
classes of communities from the network data. We also describe the process of projecting
the communities that we extract onto a feature space, which allows us to treat the
question of class dissimilarity as a learning problem.

4.1. Datasets

We analyze eight large-scale datasets, namely LiveJournal; DBLP; two portions of the
Facebook network (denoted by Facebook–Rice University Undergraduate [Ugrad] and
Graduate [Grad]); Amazon; and three biological networks denoted by HS, SC, and Fly.
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The collection encompasses different forms of entities and relationships originating
from diverse domains.

The LiveJournal dataset consists of a snapshot of a large network of bloggers, pre-
viously explored by Backstrom et al. [2006]. The snapshot includes 4,847,571 bloggers
who explicitly declare their friendship links. Due to the massive size of this dataset,
we consider two portions of it, which we obtain by starting at a random node and per-
forming a breadth-first search from that node. The datasets, henceforth named L J1
and L J2, contain 500,000 nodes each. L J1 and L J2 contain 10,736,588 and 10,640,429
edges, respectively.

DBLP data is publicly collectible, and our dataset consists of a snapshot taken in
May 2009 of the online publication’s database site DBLP. The data include a collection
of editions of publication venues (i.e., conferences and journals) in computer science. A
pair of the 744,386 authors present in the dataset are linked if they have coauthored
at least one paper in any of the venues.

Facebook–Rice University Ugrad and Grad are an anonymized portion of the Face-
book network that includes Rice University students, collected by crawling public
friends lists on Facebook on May 17, 2008. They consist of two disjoint sets of 1,220
undergraduate students and 503 graduate students, respectively. Mislove et al. [2010]
present a detailed description of these datasets.

The Amazon dataset [Leskovec et al. 2006] is a product copurchasing network from
the online retailer Amazon.com. Each node represents a book, and an edge exists be-
tween two nodes if one was frequently purchased with the other. The network contains
270,347 nodes and 741,142 edges. For each book, Amazon.com reports up to five other
items that were frequently purchased with the book.

Biological networks HS, SC, and Fly describe protein-protein interactions for H.
sapiens (human), S. cerevisiae (a type of yeast), and Drosophila (a fruit fly species)
[Park et al. 2011], respectively. In these networks, a node represents a protein, and two
nodes are connected if scientific evidence of their interaction exists. HS contains 10,298
nodes and 54,655 edges; SC contains 5,523 nodes and 82,656 edges; and Fly contains
15,326 nodes and 486,970 edges.

4.1.1. Annotated Communities. The networks that we analyze contain annotations re-
flecting examples of communities that arise in these domains.2 Some of these sets
are user defined (i.e., users explicitly declare their participation in the community)
whereas others reflect contextual information of the underlying process or organiza-
tion (e.g., university department, protein function, product category). Next we describe
how we identify and clean the annotated communities for each dataset.

For the social networks, LiveJournal users explicitly declare their membership in
zero or more communities created and administered by users. In DBLP, conferences
where authors publish their research work reflect the community memberships. Fi-
nally, for Facebook–Rice University Ugrad and Grad, users who possess common aca-
demic attributes, such as department, major, or dormitory, form the communities. These
attributes were obtained by matching Facebook names with student records from the
university’s directory [Mislove et al. 2010].

For each item in Amazon.com, the online store provides several product categories,
such as Photo Essays or Landscape Architecture Textbooks. We identify a set of nodes
possessing a common categorical label as a community.

For HS, SC, and Fly, a number of proteins (although not all) have annotations re-
garding one or more gene ontology IDs describing the known functions that the protein

2These communities, however, may not represent an unbiased sample of communities in these networks, as
other communities that are not annotated might also exist.
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serves (e.g., metabolic regulation). We use these gene ontology values to identify the
communities.

Because we define annotated communities by identifying sets of nodes with common
labels, we sometimes encounter annotated communities containing multiple compo-
nents. Considering disconnected communities would produce a less informative feature
space, because some metrics achieve extreme values, such as infinity, for disconnected
subgraphs (shortest paths, diameter, and so on). In these cases, rather than discard-
ing the communities, we simply consider each component to be a separate commu-
nity. Therefore, to capture the community information implicit in the annotations, we
consider each connected component of the graph induced by a node set possessing a
common label as an annotated community by itself.

Earlier experiments suggest that these structural features are not well represented
in small communities, as the extracted features of these communities exhibit high
correlation—that is, the intrinsic dimensionality of their feature space is too low to
represent the structural variability that we want to observe. Therefore, it was our early
decision to establish a cutoff point for the community size, below which the objects are
too small to be representative. In the other extreme are the communities that are too
large and sparse that make the features distorted in meaningless ways. Therefore, we
filtered out small communities with fewer than 10 members and large communities
with more than 1,000 members.

Overall, we identified 29,955 annotated communities for L J1; 39,598 for L J2; 10,595
for DBLP; 24 for Rice Grad; 41 for Rice Ugrad; 9,439 for Amazon; 64 for HS; 76 for SC;
and 54 for Fly.

4.2. Structural Classes and Feature Space

In this section, we describe how to produce examples that constitute the structural
classes and how to build the feature space for our learning framework. The process
consists of two steps. First, we produce the examples by applying community detection
algorithms, one for each class, to the network data. Second, we extract features by
measuring a broad spectrum of properties of the subgraphs induced by communities.
This latter step uses a set of examples consisting of the output produced in the previous
step along with the set of annotated communities.

4.2.1. Producing the Examples. To illustrate the study of classes representing intrinsi-
cally defined communities, we selected a collection of 10 community detection proce-
dures. We applied these procedures to each of the nine network datasets to extract ex-
amples of subgraphs produced by these methods. We labeled examples with the identity
of the community detection procedure that produced them. In total, for each network,
we created 11 structural classes of communities: one class of extrinsically defined com-
munities, which comprises examples of annotated communities, and each of the other
10 classes corresponding to intrinsically defined communities, which comprise exam-
ples extracted by each of the 10 community detection algorithms, respectively. Figure 2
presents a graphical illustration of this process.

Without any assumptions on the structures that the algorithms produce, we chose
our collection with the goal of including algorithms that are representative of strate-
gies employed by a broad range of algorithms in the literature, purely based on their
description. This description-based diversity is reflected in the categorization of Coscia
et al. [2011]. Next, we briefly describe the community detection procedures that we
consider, together with some examples of algorithms in the same description-based
category according to Coscia et al. [2011].

(1) Breadth-First Search (BFS): To establish a baseline, we use breadth-first
search to extract sets that serve as examples of random connected communities.
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Fig. 2. The process of extracting examples of communities. We apply a given algorithm to a network to
extract examples of typical structures that it produces (i.e., the communities extracted as its output). The
set of examples extracted is further annotated with the name of the algorithm that produced them.

To create one BFS community of size k, we begin with a randomly selected node
and perform a breadth-first search from that node until we visit k elements.

(2) Random Walk 0 (RW0): The central idea in many community detection algo-
rithms is that random walks tend to concentrate within a community [Pons and
Latapy 2006; Weinan et al. 2008]. To create communities of size k, we begin with
a random node and perform a uniformly random walk from that node until k
different nodes are visited. This method represents a way to extract a connected
community that encodes little structure and serves as another baseline procedure.

(3) Random Walk 0.15 (RW15): This is similar to the preceding method with the
twist that at each step we restart the walk from the starting node with 0.15
probability. RW15 concentrates the random walk distribution around a center,
thereby forming more compact sets, whereas RW0 communities tend to spread
out.

(4) (α, β) (AB): An (α, β)-community, for α < β, requires every member of the com-
munity to be connected to at least β other members, whereas nonmembers have
at most α links to the community [Mishra et al. 2008]. This definition allows for
overlapping communities whose out-links may outnumber the in-links. To produce
an (α, β)-community of size k, we produce a BFS community of size k and then
apply a limited number of sequential node swaps that aim at making the set an
approximate or exact (α, β)-community. In each step, we remove the community
node with the fewest member neighbors and add the fringe node with the most
member neighbors. The α −β algorithm can be considered an example of the class
of algorithms that search for sets of nodes that meet some specific structural cri-
teria. Other algorithms that find communities meeting specific structural criteria
are Clique Percolation [Palla et al. 2005], S-Plexes Enumeration [Komusiewicz
et al. 2009], Bi-Clique [Lehmann et al. 2008], and EAGLE [Shen et al. 2009].

(5) Link Communities (LC): In contrast to the majority of the available algorithms,
Link Communities [Ahn et al. 2010] aims at addressing the overlapping and
hierarchical nature of community structure by treating communities as groups
of links rather than nodes, defining a similarity function on edges based on their
shared node neighborhoods, and then using hierarchical single-linkage clustering
to identify communities of edges. We extract examples of this structure by applying
a standard implementation of this algorithm to our networks. We include Link
Communities as a representative of algorithms that cluster links rather than
nodes. Other algorithms in this category include the Link Modularity [Evans and
Lambiotte 2009] and Link Maximum Likelihood [Ball et al. 2011] algorithms.
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(6) Infomap (IM): The Infomap algorithm [Rosvall and Bergstrom 2011] views the
problem of finding communities as akin to the problem of a mapmaker deciding
on a level of granularity. The communities and the nodes therein have names.
A random walk in the network is described by appending the community name
followed by the name of nodes visited while in the community to a transcript.
The goal is to find the community structure that minimizes the expected length
of the description. Intuitively, such a structure would cause random walks to
rarely escape communities. Infomap is a representative of algorithms that define
communities as a group of nodes that are closer to each other than to nodes
outside the community with respect to the number of hops between two nodes.
Other examples of these approaches are Walktrap [Pons and Latapy 2006] and
DOCS [Wei et al. 2009].

(7) Louvain: The Louvain method [Blondel et al. 2008] is a popular method for
greedy modularity optimization. The algorithm consists of iteratively aggregat-
ing nodes into communities whenever this move locally improves modularity.
The process outputs communities when no further merge produces a significant
gain in modularity. The Louvain method is a classic example of a community
detection method that optimizes for internal community density. Other such al-
gorithms include the MetaFac [Lin et al. 2009], Variational Bayes [Hofman and
Wiggins 2008], LA → IS2 [Baumes et al. 2005], and Local Density [Schaeffer 2005]
algorithms.

(8) Newman-Clauset-Moore (Newman): This method is another example of greedy
modularity maximization [Clauset et al. 2004]. Unlike the Louvain method, which
considers merges that locally improve modularity, Newman-Clauset-Moore iden-
tifies a hierarchical community structure from which communities are extracted
by cutting the dendrogram that reflects the hierarchy at the level that maximizes
a global value of modularity. As with the Louvain method described earlier, the
Newman-Clauset-Moore method for modularity optimization is an example of an
algorithm that attempts to find communities with high internal density.

(9) Markov Clustering Algorithm (MCL): MCL [Dongen 2008] is a random walk–
based method. It consists of two alternating steps. It begins with the random walk
matrix of a graph (the normalized adjacency matrix). The first step, namely expan-
sion, squares this matrix; this corresponds to computing the flow between clusters.
The second step, called inflation, squares each element of the matrix individually,
and then renormalizes; this step corresponds to increasing the strength of in-
tracommunity ties. This process converges to a stationary matrix with several
connected components, which the algorithm outputs as the communities. MCL
is a member of the class of community detection algorithms that also includes
Infomap.

(10) Metis: Metis [Karypis and Kumar 1998] is a graph partitioning method that
is a variation of the Kernighan-Lin algorithm [Kernighan and Lin 1970]. Metis
partitions a node-weighted network into a specified number of equal weight sets
while minimizing the number of edges between the sets. Here we used a version
of Metis that we adapted for finding high-conductance sets. The original Metis
algorithm can be considered as representative of the class of ‘bridge detection’
community detection algorithms, which identify communities by removing bridges
between dense sections of the network. Other algorithms in this class include
Edge Betweenness [Girvan and Newman 2002b], CONGA [Gregory 2008], L-Shell
[Bagrow and Bollt 2005], and Internal-External Degree [Lancichinetti et al. 2009].
Additionally, because we modify the algorithm to identify high-conductance sets,
it might also be considered as part of the class of algorithms that optimize for
internal community density.
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As we are interested in the structural signature produced by the different methods,
we run the parametrized algorithms multiple times for each network, randomly vary-
ing the parameter settings. Some of the procedures are nondeterministic and generate
different communities at each run, even if the same parameters are used. To preserve
uniformity with the set of annotated communities, in the process of generating exam-
ples, we discard communities of size less than 10 or greater than 1,000, as we are
interested in the structure of reasonably sized communities. (See Subsection 4.1.1 for
the details.) We also filtered out communities that contain multiple components, which
are rarely extracted by the methods we used. The number of examples extracted varies
among the procedures.

However, we inherit sensitivity to class imbalance from the methods we use for class
separability. The effects of class imbalance on the performance of machine learning
methods is the subject of an extensive literature in machine learning. For our experi-
ments, we have applied standard methods in the literature for minimizing the problem.
For an overview, we refer the reader to the work of Chawla [2005]. More specifically,
we undersample the large classes and to a lesser extent oversample small classes to
reduce this source of bias. Naturally, undersampling can result in some portions of a
network (particularly a large network) not being represented in our final set of com-
munities. Table II contains the average number of communities from each class to
which each node belongs after under- or oversampling. For the small networks (Grad,
Ugrad, HS, SC, and Fly), we sample 100 communities from each class, and for the
larger networks, we sample 1,000 communities from each class. If a community de-
tection method tends to produce a large number of small communities, and we then
undersample this set, we will see small average values, whereas if a method produces
a small number of large communities that we oversample, we will see higher average
values.

Our algorithm selection has the purpose of illustrating the applicability of our frame-
work. The approach, however, is not limited to the list that we consider. Our method
scales to a large number of classes, and a collection of classes should include enough
information to reflect the analysis intended. As discussed in the next section, a pair of
classes may be highly correlated to each other (e.g., RW0 and RW15). As a result, they
may split the predictions in such a way as to obfuscate the interpretation of the out-
come. To avoid this pitfall, in Section 5.2 we consider an interclass correlation analysis
to assess the independence of an algorithm collection.

4.2.2. Feature Extraction. In the feature extraction phase, we measure the subgraphs
induced by the communities produced in the previous step and those induced by anno-
tated communities. We use a large spectrum of measurements that cover many proper-
ties of both the internal link structure and the external interaction of the community
with the rest of the network. Each measurement corresponds to a dimension of our
feature space. Table I lists the features and describes their corresponding measures.

Most of the features can be understood from their table description. The feature
Information Centrality, however, deserves further explanation. This measure captures
a node’s degree of centrality as a function of how fast its information can sequentially
reach every other node in the network. For a given node, the information centrality
computes a harmonic mean of the amount of “signal” that a node receives from other
nodes. A signal between two nodes corresponds to a path between them, which varies
according to the “noise,” instantiated here as the path length [Stephenson and Zelen
1989].

By measuring the structural properties described in Table I for each example of a
community derived in the previous phase, we obtain 11 classes of labeled examples in
feature space, which constitute the input in our framework.
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Table I. List of Features Corresponding to Measures of the Subgraphs That Communities Induce

# Feature Description
1 n Number of nodes
2 m Number of edges
3 Diameter Greatest distance between two nodes by traversing shortest paths
4 Edge Density Ratio of m to the maximum possible number of edges
5 Conductance Ratio of m to the sum of the total degrees of the n nodes,

including edges to rest of the network
6 Transitivity Ratio of the number of three-node cycles (triangles) to the number of

two-hop paths (open triangles)
7 Triangle Density Ratio of the number of three-node cycles (triangles) to the number of

possible node triples
8–11 Shortest Path All-pairs shortest paths. The features are the three quartiles and the

maximum.
12–15 Edge Betweenness For each edge, fraction of all-pairs shortest paths that include that edge.

The features are the three quartiles and the maximum.
16–20 Node Betweenness For each node, fraction of all-pairs shortest paths that include that node.

The features are the minimum, the three quartiles, and the maximum.
21–25 α For each nonmember on the fringe of the community, number of members

to which this node is connected.
The features are the minimum, the three quartiles, and the maximum.

26–30 β For each member, number of other members to which this node is
connected.
The features are the minimum, the three quartiles, and the maximum.

31 Treesum Total number of spanning trees of the community graph, divided by
the total number of spanning trees of a Kn-clique
(computed using Kirchoff ’s matrix tree theorem [Lyons and Peres 2012])

32–36 Information For each node, its Stephenson and Zelen’s information centrality
Centrality index [Stephenson and Zelen 1989]. The features are the minimum, the

three quartiles, and the maximum.

Table II. Average Number of Communities from Each Class to Which Each Class Belongs
after Sampling

Grad Ugrad HS SC Fly DBLP Amaz L J1 L J2

BFS 9.9 5.3 0.9 1.0 0.2 0.2 0.2 0.2 0.1
RW0 9.9 5.3 0.9 1.0 0.2 0.2 0.1 0.1 0.1
RW15 9.9 5.3 0.9 1.0 0.2 0.2 0.2 0.1 0.1
AB 9.9 5.3 0.9 1.0 0.2 0.03 0.1 0.1 0.1
IM 2.7 7.3 0.1 0.4 1.1 0.04 0.06 0.3 0.1
LC 4.1 0.5 0.2 0.4 0.2 0.004 0.01 0.3 0.3
Louv. 9.1 12.5 4.8 10.0 9.0 2.1 1.2 20.4 16.4
Newm. 16.8 24.8 5.3 19.8 9.0 0.8 0.9 1.0 1.0
MCL 1.7 4.1 0.03 0.06 0.9 0.01 0.02 0.01 0.01
Metis 4.3 10.4 0.5 1.7 0.7 0.1 0.2 0.5 0.3
Annot. 10.6 6.2 1.4 1.3 3.2 0.1 0.2 0.2 0.1

5. FRAMEWORK AND APPLICATION

In this section, we describe our class separability framework and illustrate its applica-
bility with an experimental application using the data that we processed through the
steps described in the previous section.
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Table III. Percentage of the Probability Mass of Classification of Elements in the Test Set into the Correct Class,
Using SVM, for All Networks

Grad Ugrad HS SC Fly DBLP Amaz L J1 LJ2

BFS 60% 88% 73% 70% (40%) 63% 55% 86% 81%
RW0 44% 55% 43% (39%) (27%) 52% 43% 61% 63%
RW15 40% (29%) 44% 42% 34% 46% 39% 57% 57%
AB 83% 91% 90% 71% 60% 70% 74% 90% 89%
IM 27% (23%) 72% 73% (2%) 62% 51% 82% 66%
LC 68% 96% 83% 85% 83% 67% 56% 90% 89%
Louv. 24% (3%) 49% (1%) (0%) 45% 58% 38% 49%
Newm. (14%) (25%) (15%) (0%) 90% 26% 39% 45% 56%
MCL 19% (22%) 57% 28% (34%) 59% 46% 80% 74%
Metis 61% 73% 81% 90% (42%) 88% 66% 92% 86%
Annot. 37% 33% 50% 46% (8%) 47% 40% 72% 71%

Global 1.44 2.11 1.7 1.81 1.35 1.58 1.38 1.68 1.76
The last row presents global separability ratio between the scatter matrices J3 scores measuring the sepa-
rability of classes to a baseline consisting of the J3 scores of the same data with shuffled class labels. If a
value is in parentheses, this indicates that a plurality of the probability mass from that class was assigned
to some other class.

5.1. Class Separability Measures

Methods for measuring class separability are popular in machine learning for guiding
feature selection analysis. Accordingly, effective feature sets for classification tasks
are the ones that simultaneously lead to high interclass and low intraclass variability
[Theodoridis and Koutroumbas 2008]. Methods of class separability allow for a rigorous
analysis of independence among classes. Unfortunately, many of these methods are
computationally demanding or depend on assumptions that are often mismatched with
applications [Fatemi-Ghomi et al. 1999].

In this work, we frame the research question of discriminating the structure of differ-
ent communities as a class separability problem. The separability of structural classes
of communities provides information on whether different communities come from the
same (or fundamentally different) distributions of feature values. This analysis is in-
formative of the extent to which different algorithms produce structural differences
and the extent to which community detection algorithms succeed in producing sets
that resemble annotated communities.

To measure class separability, we first use the J3 metric [Theodoridis and
Koutroumbas 2008], which is based on within-class and between-class scatter matri-
ces. The J3 criterion calculates two scatter matrices. The between-class scatter matrix
Sm is simply the global covariance matrix, and the within-class scatter matrix Sw is
the average of the covariance matrices for each class, weighted by the size of that class.
The J3 score is then the trace of |S−1

w Sm|. A high J3 score indicates that within-class
covariance is low and global covariance is high. The last row of Table III contains the
ratio of the global J3 value for each network to a baseline J3 value that is obtained by
measuring the separability of the same data, but with the class labels shuffled. A value
of 1 indicates separability close to a random relabeling, and higher values indicate
greater separability. These values demonstrate that the classes in each network are
separable to some extent, even when evaluated through a fairly simple measure.

Although the J3 criterion is useful for gaining a coarse overview of class separability,
it is a global measure, which tells us little about the separability behavior of each class.
Aiming at achieving more fine-grained separability information while including all of
the classes simultaneously and preserving computational scalability, we propose the
use of the cross-validation performance of existing probabilistic multiclass supervised
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Fig. 3. Probabilistic multiclass supervised classification of an element in the test set in the cross-validation
phase of the method to assess the separability of structural classes of communities.

classifiers as a measure of class separability. To our definition, classes are separable to
the extent that a classifier can correctly distinguish their structure by exhibiting an
accurate classification. More specifically, we employ two techniques, one parametric,
namely SVMs [Vapnik 1998], and one nonparametric, namely kNN [Aha et al. 1991],
to confirm each other’s outcomes while ruling out variability due to the specifics of
each algorithm. We select hyperparameters in both cases via grid search using the
performance of 10-fold cross validation as the objective function.

The primary goal is to gain insight into whether the classes are separable in the
feature space defined. This will tell us the extent to which the community detection
algorithms produce structural profiles that are specific to each algorithm. Using a slight
variation of the same approach, we can determine which algorithms produce outputs
that most closely resemble the annotated communities.

Our approach to measure the separability of the structural classes of algorithms
using probabilistic multiclass supervised classifiers is as follows. We measure class
separability using the performance of a threefold cross validation. For each network,
we train a multiclass classifier on a set containing two-thirds of the examples, which
are selected at random, and then evaluate the performance of the model on the remain-
ing third, which constitute the test set. We perform three rounds of this process and
average the outcomes. For each element in a test set, the probabilistic SVM or kNN
model outputs a probability mass vector indicating the probability that each data point
belongs to each class. Figure 3 illustrates the cross-validation phase as applied to one
element in the test set.

Using the structural classes computed via the steps described in the preceding sec-
tion, we perform this cross validation on a dataset containing all 11 classes: 10 classes
corresponding to the structure that the algorithms produce, and one class correspond-
ing to the structure of annotated communities. We first observe that the experiments
suffer little variability between the two classifiers. Figure 4 presents the analysis of
the outcome produced by the SVM-based method applied to the DBLP network. In
the picture, we show a bar graph of the distribution of probability mass for each class
derived from the network DBLP. This graph visually demonstrates that the bulk of the
probability mass from each class was correctly classified.

Table III contains a summary of results for all networks. Each entry in the table
represents the fraction of probability mass from that class that was correctly assigned.
When a value appears in parentheses, this indicates that more of the probability mass
was assigned to some other class. As this table shows, only 17 out of 99 network-class
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Fig. 4. Distribution of probability mass resulting
from the SVM on network DBLP, cross validation
on the 11 classes.

Fig. 5. Distribution of probability mass resulting
from the SVM, classification of annotated commu-
nities.

pairs failed to have a plurality of the probability mass correctly classified. Newman
Modularity is frequently misclassified; however, it is a small class in all networks,
especially in the smaller ones (e.g., on network SC, Newman Modularity found only
three communities of size between 10 and 1,000). In the case of annotated commu-
nities, a plurality of their corresponding classes tend to be correctly classified, with
the exception of network Fly. Figure 4 serves as a visual reference of network DBLP,
whose classes have a global separability score of 1.58. The other networks exhibit
similar distributions, with the exception of network Fly, whose classes are less well
separated.

The previous experiment shows that annotated communities tend to form their own,
separable class that is significantly distinct from all other classes. However, a ques-
tion of interest to the design and application of community detection procedures is
which algorithms output communities bearing the closest structural resemblance to
the annotated communities. To answer this question, we perform a slight variation
of the classification task described previously. We train a classifier on the 10 classes
corresponding to the community detection algorithms and leave the class of annotated
communities out of the training set. The goal of this experiment is to evaluate to which
class of intrinsically defined communities the annotated examples of the test set are
classified.

Figure 5 shows the distribution of probability mass of the annotated communities
classified into the different classes corresponding to community detection algorithms.
The structure that the random walk and BFS procedures produce is clearly the most
similar to that of the annotated communities. For seven of the nine networks, a plurality
of the probability mass from the annotated communities was assigned to either RW15
or RW0, followed by BFS. Due to the high similarity between the two random walk
classes, the classifier confuses these two as shown in Figure 4. The exceptions to this
trend are networks Grad and Fly. For Grad, the annotated communities’ probability is
spread across many classes, with Metis receiving the plurality of the mass. In the Fly
network, the greatest share of the mass of annotated communities is assigned to LC.
These exceptions are associated with small network datasets; therefore, the variability
could be due to small population sample size.

Given the diverse nature of these networks, it is perhaps surprising that in virtu-
ally all domains, the random walk and BFS communities bear the closest structural
resemblance to the annotated communities. Even more astonishing is the fact that the
structure of annotated communities is closer to that of the baseline procedures than to
that of more structured approaches.
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Table IV. Pairwise Separability for Classes in Network Amazon, Calculated Using Scatter Matrices

BFS RW0 RW15 AB IM LC Louv. Newm. MCL Metis Annot.

BFS 1.00 1.14 1.14 1.16 1.22 1.19 1.40 1.22 1.15 1.57 1.13
RW0 1.14 1.00 1.04 1.33 1.40 1.33 1.52 1.31 1.28 2.01 1.14
RW15 1.14 1.04 1.00 1.27 1.33 1.36 1.54 1.35 1.28 1.94 1.12
AB 1.16 1.33 1.27 1.00 1.15 1.08 1.22 1.18 1.15 1.25 1.16
IM 1.22 1.40 1.33 1.15 1.00 1.36 1.39 1.15 1.13 1.14 1.12
LC 1.19 1.33 1.36 1.08 1.36 1.00 1.65 1.26 1.09 1.27 1.09
Louv. 1.40 1.52 1.54 1.22 1.39 1.65 1.00 1.06 1.63 1.19 1.26
Newm. 1.22 1.31 1.35 1.18 1.15 1.26 1.06 1.00 1.24 1.13 1.12
MCL 1.15 1.28 1.28 1.15 1.13 1.09 1.63 1.24 1.00 1.22 1.06
Metis 1.57 2.01 1.94 1.25 1.14 1.27 1.19 1.13 1.22 1.00 1.27
Annot. 1.13 1.14 1.12 1.16 1.12 1.09 1.26 1.12 1.06 1.27 1.00

Ratios are measured relative to the baseline value obtained by shuffling class labels.

5.2. Class Selection Method

The feature space generated by the data forms a reference system for analyzing com-
munity structure from the viewpoint of the diversity of structures that come from
different notions of communities. When we employ class separability measures, it is
particularly important to ensure that the classes considered are independent and not
redundant. For example, when identifying which type of community detection method
produces structure that most resembles that of the annotated communities, we saw
that one of the two random walk classes tended to be assigned the bulk of the probabil-
ity mass of the annotated communities on most networks. However, these two classes
are remarkably similar. When we present a classifier with two almost indistinguish-
able classes, the classifier splits the examples’ probability masses equally between the
classes.

To provide a rigorous method of class selection, we propose the application of a pair-
wise Scatter Matrix measurement [Theodoridis and Koutroumbas 2008] for analyzing
class similarity and determine which classes from a collection are redundant or in-
dependent. We again use the J3 criterion that we originally used to measure overall
class separability within a network, but this time we measure pairwise separability by
considering each pair of classes separately. These values give us insight into whether
certain pairs of classes are redundant, are correlated, or overlap significantly (e.g., the
two methods for maximizing modularity). Values for network Amazon are shown in
Table IV. In this table, values are presented as a ratio of the J3 score of a pair of classes
to the J3 score of a baseline separability value, which is obtained by shuffling the
examples’ class labels. As we see in Table IV, no two classes are completely identical,
although the two random walk classes are quite similar, as are the two modularity-
based classes. We see this pattern repeated consistently in other networks, although
occasionally other pairs of classes are similar (e.g., in network Amazon, the MCL and
Annotated classes have a fairly low separability score, but this pattern does not occur
in other networks).

We now repeat our earlier experiments after applying the results obtained by our
class selection method. We learned from Table IV that some pairs of classes, namely
the two random walk and the two modularity classes, are somewhat redundant. We
thus merge each of these pairs of classes into one single class, and again perform the
earlier experiments.3

3Here we could have preserved one representative of each group of similar structural classes instead of
merging the similar classes. Whether to use one approach or the other depends on the intended application.
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Table V. Percentage of the Probability Mass of Classification of Elements in the Test Set into the Correct Class,
Using SVM, for All Networks, After Merging Classes

Grad Ugrad HS SC Fly DBLP Amazon L J1 L J2

BFS 70% 90% 74% 69% (39%) 65% 60% 85% 81%
RW 74% 91% 83% 83% 61% 68% 65% 91% 88%
AB 79% 93% 92% 77% 54% 70% 76% 91% 89%
IM 4% (15%) 76% 72% (2%) 63% 53% 83% 67%
LC 62% 95% 87% 81% 84% 68% 58% 91% 88%
Modul. 35% (25%) 39% 33% (34%) 44% 52% 53% 62%
MCL 25% (21%) 59% 33% (25%) 61% 47% 81% 74%
Metis 67% 74% 73% 83% (41%) 89% 70% 93% 85%
Annot. 27% 40% 52% 47% (7%) 53% 45% 74% 74%

Fig. 6. Distribution of probability mass resulting
from the SVM on network DBLP, cross validation
on the nine classes after merging redundant classes.

Fig. 7. Distribution of probability mass resulting
from the SVM, classification of annotated commu-
nities on the nine classes after merging redundant
classes.

Figure 6 contains the distribution of probability mass obtained by applying the SVM
to all nine classes on network DBLP, and Table V contains the percentage of probability
mass from each class in each network that was correctly classified. We saw in our
first experiment that the classifiers tended to confuse the two random walk classes
with one another; for example, elements from RW15 were frequently misclassified as
belonging to class RW0. As expected, we typically see that the single random walk
class and single modularity class are substantially more consistent than either of their
subclasses alone. This effect is particularly pronounced on certain networks, such as
Ugrad, where more than 90% of the probability mass from the large random walk class
is correctly classified (as opposed to values of 55.1% and 61.4% for RW0 and RW15
separately).

Figure 7 contains the distribution of probability mass obtained when classifying
the annotated communities into one of the eight algorithm classes. As predicted by
our class selection method, the merged classes receive all of the mass assigned to the
corresponding separate classes. Moreover, previously, for network Grad, we saw that
a plurality of the mass of the annotated communities was previously assigned to the
Metis class; however, now that we combine the two random walk classes, we see that
the single random walk class receives more probability mass than either of the two
random walk classes alone, and thus more than the Metis class.

5.3. Class Consistency Across Networks

We now turn our attention to the problem of analyzing class consistency across net-
works. In our previous experiments, we analyzed each network separately and saw that
the 11 classes of communities all tended to be fairly consistent (e.g., elements from class
BFS in network Grad shared important structural features with one another). In the
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Table VI. The Percentage of Probability Mass from Each Class That Was Correctly Classified

Class Grad Ugrad HS SC Fly Amazon DBLP L J1 L J2

BFS 60.3% 34.7% 42.6% 36.4% 25.2% 46.2% 63.4% 37.1% 48.5%
RW0 44.5% 26.2% 30.6% 21.0% 20.8% 38.8% 30.8% 22.8% 20.9%
RW0.15 41.0% 23.6% 24.8% 16.0% 20.1% 48.4% 26.4% 19.8% 24.9%
AB 58.4% 41.7% 63.6% 44.5% 9.9% 20.0% 55.1% 64.3% 62.8%
InfoMap 4.7% 5.5% 22.0% 42.5% 23.8% 6.0% 25.1% 34.0% 33.0%
LinkCom 6.6% 14.6% 29.4% 33.8% 15.6% 14.8% 27.7% 23.2% 28.4%
Louvain 2.1% 43.5% 8.0% 25.0% 41.0% 1.1% 7.8% 20.9% 9.1%
Newman 6.3% 4.9% 8.4% 23.2% 3.6% 9.9% 5.4% 34.2% 53.6%
MCL 7.3% 13.9% 23.7% 20.3% 27.1% 13.6% 18.9% 40.4% 7.3%
Metis 20.2% 11.9% 31.0% 12.1% 34.8% 3.5% 5.9% 14.8% 14.0%
Ann. 5.8% 19.7% 23.8% 10.8% 20.6% 31.0% 17.3% 36.1% 34.2%

The column titles indicate the networks on which the classifiers were trained. Row labels indicate the
different algorithm classes. The value in Row C, Column N, indicates the average percentage of probability
mass from class C that was correctly classified when the classifier was trained on network N and evaluated
on all networks except for N.

next experiment, rather than studying each network in isolation, we simultaneously
examine classes across all networks.

We perform nine experiments, each corresponding to a network N. In each experi-
ment, we create a training set containing elements from all 11 community classes in
network N, labeled with their community type (e.g., BFS, Louvain, etc.). We create a
test set containing elements from the 11 community classes of the other eight networks.
In this test set, each element is labeled with its community type, but we do not identify
the network from which it came.

The purpose of this experiment is to determine whether communities generated by a
specific method tend to share structural features, even across networks. For example,
we wish to learn whether an SVM trained only on representatives from network Grad
can correctly classify communities from other networks: does a BFS community from
network DBLP resemble a BFS community from network Grad?

Table VI contains the results of this experiment. The element in row C, column N
contains the average percentage of probability mass from class C that was correctly
classified when the classifier was trained on elements from network N. For example,
when the SVM was trained on elements from network Grad, an average of 60.3% of the
probability mass from class BFS in the other networks was correctly classified as BFS.

We see that some classes, particularly BFS, RW0, RW0.15, and AB, tend to have a
great deal of consistency across networks. The other classes tend to have a less distinct
signature, often performing worse than random.

6. STRUCTURAL TENDENCIES OF COMMUNITIES

As we have seen in the preceding experiment, each community detection algorithm
extracts a distinct structure, which our method is able to separate when projected onto
the feature space that we define. In this section, we are concerned with identifying the
ways in which the algorithms produce these distinguishable biases by finding which
properties exhibit the highest degree of between-class variability. We are also concerned
with identifying the properties that are the most discriminative to distinguish between
annotated communities and the synthetic data produced by the algorithms. Finally, a
dividend of our approach is the ability to organize a collection of algorithms by grouping
those that exhibit similar behaviors.

To address this question, we use the Correlation-based Feature Selection (CFS)
algorithm [Hall 1999] to identify subsets of the most discriminative features for each
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Table VII. Summary of the Feature Selection Results
Features are ranked in order of their frequency in the selection list over the networks.

(∗Reporting how many quartiles of the property were selected. ∗∗Feature number according to Table I.)

Network Grad Ugrad HS SC Fly DBLP Amaz. LJ1 LJ2

Number of Features Selected 6 7 10 5 6 10 8 12 11

Rank Feature

1 Conductance 1 1 1 1 1 1 1 1
1 Diameter 1 1 1 1 1 1 1 1
3 Info Centrality∗ 2 2 3 1 1 2 1 2 2
4 Node Betweenness∗ 2 2 2 1 5 5
5 Shortest Path∗ 1 3 2 1 1 1
6 β∗ 1 1 1 2 1 1 1
7 α∗ 1 1 1 2 1

Other Features∗∗ #6 #4, #7

network. CFS is intended to identify a set of features that are well correlated with the
class label and poorly correlated with each other. For a given subset S containing k
features, CFS defines a merit function MS:

MS = krcf√
k + k(k − 1)rff

. (1)

In this equation, rcf represents the mean correlation between each individual feature f
in S with the class label c, and rff represents the mean correlation between pairs of fea-
tures in K. Intuitively, this function gives a high score to sets of features that are highly
predictive of the class and are not redundant with one another. Using this function, one
can rank all subsets of features, but this would be inefficient in most cases. CFS begins
with no elements in the feature set, and it then employs a hill-climbing algorithm to
search the space of feature subsets. The algorithm includes the ability to backtrack up
to five times per iteration to search for a subset S with a greater value of MS.

Table VII lists the features selected by CFS for each network ranked in order of the
frequency with which they appear in the selection over the networks. The table lists
the most frequent features or, for those properties calculated with quartiles, sets of
features. The entries for row “Features” and column “Network” that contain the value
1 indicate the presence of that feature in the feature selection process applied to the
data from that particular network, whereas empty cells indicate the absence thereof.
Integers larger than 1 can be found in some of the entries and indicate the number
of quartiles from that feature that were selected by CFS. In nearly every network,
conductance, diameter, information centrality, and node betweenness were the most
discriminative features.

Surprisingly, in several cases, multiple quartiles of a feature appear: for example,
Fly has three path length quartiles, and L J1 and L J2 each contain all five node
betweenness features. We had expected that different quartiles of the same feature
would be highly correlated to each other, and therefore they would be unlikely to
co-occur among the features selected by CFS. Instead, these results suggest that vary-
ing the choice of community detection algorithm results in fine-grained variation in
the distribution of such features.

To assess the effectiveness of the features that CFS found, Table VIII presents for
all networks the classification performance of the kNN cross validation using both the
full set of features and the subset of features found by CFS. We see that in most cases,
there is very little loss in accuracy. We observe a similar qualitative outcome for the
SVM cross validation. In the table, the largest drops happened for L J1 and L J2 and

ACM Transactions on Knowledge Discovery from Data, Vol. 8, No. 1, Article 5, Publication date: February 2014.



5:22 B. Abrahao et al.

Table VIII. k-NN Classification Performance Using Both the Full Set of Features and the Subset of the Most
Discriminative Features Selected by CFS

Grad Ugrad HS SC Fly DBLP Amaz. L J1 L J2

All Features 62.9% 86% 82.2% 80.9% 93.6% 81.3% 65.3% 89.1% 88.5%
With selection 61.5% 84.7% 85.1% 81% 90.6% 79.4% 63.0% 78.8% 76%

Table IX. Summary of the Feature Selection Results When Classifying Implicitly and Explicitly
Defined Communities

Features are ranked in order of their frequency in the selection list over the networks.(∗Reporting how many
quartiles of the property were selected. ∗∗Feature number according to Table I.)

Network Grad Ugrad HS SC Fly DBLP Amaz. LJ1 LJ2

Number of Features Selected 6 5 3 6 5 7 6 4 5

Rank Feature

1 Node Betweenness∗ 2 3 1 2 2 2 2 3
2 Conductance 1 1 1 1 1 1 1
3 Info Centrality∗ 1 2 1 3 2
4 α∗ 5 1 1
5 Edge Betweenness∗ 2 1

Other features∗∗ #7 #9 #4 #3

reduced the accuracy by less than 15%. Being nearly as discriminative as the full set,
a reduced set containing a handful of features retains the relevant information needed
to analyze the bias produced by different algorithms.

To identify the properties that are the most discriminative to distinguish between
annotated communities and the synthetic data produced by the algorithms, we next
perform an experiment similar to the preceding one. However, instead of considering
separate classes of communities that the algorithms produce, we merge all implicitly
defined classes into a single class. We consider the set of annotated communities to
be one class and the set of communities extracted by all algorithms to be another
single class. In this experiment, we wish to identify those features that are most useful
for distinguishing between explicitly and implicitly defined communities. As before,
we use the CFS method to identify useful features. Table IX contains the results of
this experiment. Again, we see that conductance, node betweenness, and information
centrality are particularly important.

Finally, to organize a collection of algorithms by grouping those that exhibit similar
behaviors, we use the sets of the most discriminative features found in Table VII to
study which tendencies in feature values are associated with which algorithms. To
this end, we conducted a range analysis that distinguishes the different algorithms
according to the value of their features. In the interest of space, we summarize the
qualitative outcome of this experiment in Figure 8. The entries correspond to the
bias produced by each of the algorithms, considering all networks. Features take on
a varying range of values across different networks. Thus, to label the magnitude of
features, we compute the mean value of each class and compute a global median of
these averages over all classes. The averages occurring between the 33rd and 67th
percentile constitute the medium denomination, whereas those below the 33rd and
above the 67th constitute low and high, respectively. Finally, we count how many times
each feature produced each of the denominations across all of the networks. From this
count, we calculate three times the number of networks on which the feature had a
high score on that class plus two times the number of networks on which the feature
had a medium score on that class plus the number of networks on which the feature
had a low score on that class, and we present these values in Figure 8.
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Fig. 8. Tendency of algorithms with respect to various features. Scores are calculated by three times the
number of networks on which the feature had a high score on that class plus two times the number of
networks on which the feature had a medium score on that class plus the number of networks on which the
feature had a low score on that class.

Using this analysis, we are able to group algorithms with similar behavior. For ex-
ample, the random walk procedures produce the same structural bias. The same holds
for Louvain and Newman, and AB and LC. Our method identified these similarities
without any prior knowledge about the similar goals shared by these algorithms. Metis
and IM differ only in behavior of the node betweenness feature. The profile of annotated
communities is close to that of random walk procedures, with a few nuances. Anno-
tated communities exhibit medium conductance, whereas RW0 and RW15 extract low
conductance sets. In addition, the diameter of annotated communities was measured
as high for four of the networks, medium for one of them, and low for the remaining
four. This contrasts with RW0 and RW15, which produce sets with high diameter. Nev-
ertheless, the similarity due to other features explains the ways in which annotated
communities resemble the output of random walk–based algorithms.

7. NETWORK CONSISTENCY

Our previous experiments have considered various problems of distinguishing between
communities generated through different methods. We saw that many classes of com-
munities tended to have a strong signature, both within and even across networks;
for example, communities generated by a BFS algorithm were fundamentally different
from communities generated by the Louvain method. In the next three experiments, in-
stead of analyzing whether communities generated by different methods have different
structures, we ask whether communities from different networks are distinguishable
from one another.

In the first of these experiments, we consider each of the 11 methods of defining
communities separately (we perform a different experiment for each of BFS, Louvain,
etc.). In each experiment, we train an SVM classifier on a set containing communities
from one specific class from all nine networks, where each community is labeled with
the network from which it came. We then evaluate this classifier on other communities
from the same class, again from all nine networks, also labeled with their networks
of origin. For example, in our first experiment, both the training and test sets contain
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Table X. The Percentage of Probability Mass from Each Network That Was Correctly Classified as Belonging
to That Network

The row titles indicate the class on which the classifier was trained.

Class Grad Ugrad HS SC Fly Amazon DBLP L J1 L J2

BFS 68.9% 67.4% 36.6% 25.0% 61.3% 78.6% 71.0% 47.3% 43.3%
RW0 67.5% 74.2% 45.1% 49.5% 68.2% 82.8% 74.1% 55.4% 51.0%
RW0.15 69.3% 76.2% 47.6% 50.1% 77.2% 83.7% 76.0% 55.5% 49.2%
AB 69.8% 55.1% 30.5% 31.2% 72.0% 82.1% 70.9% 43.4% 40.4%
InfoMap 33.2% 87.8% 47.6% 51.9% 54.7% 82.1% 78.3% 62.3% 57.1%
LinkCom 38.8% 94.2% 72.9% 66.7% 74.6% 81.1% 78.1% 54.1% 53.5%
Louvain 50.3% 71.9% 72.4% 46.4% 2.6% 90.1% 88.3% 39.9% 48.5%
Newman 0.2% 0.1% 0.3% 0.1% 0.1% 94.8% 21.5% 15.2% 60.8%
MCL 20.0% 48.1% 49.9% 22.3% 22.4% 80.6% 72.5% 53.0% 55.8%
Metis 92.3% 98.1% 88.5% 83.9% 81.5% 98.2% 98.0% 92.0% 92.1%
Ann. 60.4% 52.8% 22.4% 27.3% 38.3% 91.8% 85.7% 44.5% 45.8%

elements from Grad BFS, Ugrad BFS, DBLP BFS, and so on, labeled as Grad, Ugrad,
or DBLP, respectively.

Table X contains the results of this experiment. The element in row C, column N
contains the percentage of the probability mass from network N that was correctly
classified when the SVM was trained on representatives of class C from all networks.
We see that all of the networks have a very distinctive signature. (As before, the
Newman classes are often very small, so training on this class produces unreliable
results.)

We saw earlier that elements from the same class and different networks had struc-
tural similarities (for certain classes). For example, a Grad BFS community had some
resemblance to a DBLP BFS community. In this experiment, we see that elements from
the same class and different networks generally also have important differences— that
is, although a Grad BFS community resembles a DBLP BFS community in important
ways, it is still possible to distinguish between the two. However, there are some notable
exceptions to this statement. For most classes, the classifier does a very good job at
distinguishing between networks; however, the performance of the classifier trained on
elements from the Newman (and, for network Fly, Louvain) class is particularly weak.
We see also that some networks tend to have a stronger signature than others. For
instance, the SVMs consistently classify elements from Amazon and DBLP correctly;
in contrast, they are less accurate for L J1 and L J2 (a closer examination of the data
shows that, unsurprisingly, elements from L J1 and L J2 tend to be confused with one
another).

Our next experiment is structured similarly, except instead of considering each
method of community definition separately, we merge all 11 community detection meth-
ods together into a single experiment. In this experiment, the training and test sets
again contains elements from all nine networks; however, each network is represented
by elements from all 11 community identification methods. For example, the training
and test sets contain elements from both Grad BFS and Grad Louvain, all of which are
labeled simply as Grad, and elements from both Ugrad BFS and Ugrad Louvain, all of
which are labeled as Ugrad.

Table XI contains the results of this experiment, with values along the diagonal
representing the percentage of probability mass that was correctly classified. We see
again from this experiment that all of these networks have a distinct signature, al-
though some are stronger than others. As before, L J1 and L J2 are often confused
with one another. Ugrad and Amazon, in particular, have communities that are highly
distinguishable from those of other networks. Again, we see that most networks have
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Table XI. The Percentage of Probability Mass from Elements in Each Network That Was Classified
as Each Network

Row N1, column N2 contains the fraction of probability mass of elements from network N1 in the test set that
was classified as network N2.

Grad Ugrad HS SC Fly Amazon DBLP LJ1 LJ2

Grad 62.5% 0.5% 6.0% 1.8% 0.6% 6.9% 8.3% 4.5% 8.8%
Ugrad 3.7% 74.0% 2.0% 9.0% 1.4% 0.4% 0.9% 5.0% 7.0%
HS 2.3% 1.6% 44.2% 7.1% 2.0% 13.0% 5.9% 11.4% 12.6%
SC 1.6% 4.9% 6.3% 42.8% 4.3% 2.1% 4.7% 17.7% 15.5%
Fly 0.5% 2.2% 4.1% 6.5% 60.7% 1.2% 3.1% 11.7% 9.9%
Amazon 1.8% 0.3% 4.6% 0.8% 0.4% 71.6% 11.3% 3.4% 5.3%
DBLP 2.4% 0.5% 3.0% 2.1% 0.9% 12.5% 64.1% 6.1% 48.5%
LJ1 2.0% 1.9% 6.4% 7.7% 4.3% 4.8% 6.8% 35.8% 30.3%
LJ2 2.8% 2.2% 6.1% 7.4% 3.9% 5.1% 8.1% 27.3% 37.3%

Table XII. The Percentage of Probability Mass from Each Network That Was Correctly Classified as Belonging to
That Network, Where the Training Set Contained Elements from the Specified Class

Training Class Grad Ugrad HS SC Fly Amazon DBLP LJ1 LJ2

BFS 43.5% 11.5% 11.0% 9.7% 79.2% 73.9% 45.4% 31.2% 5.2%
RW0 40.0% 13.1% 11.0% 11.5% 68.5% 76.0% 44.1% 22.7% 7.3%
RW0.15 35.9% 14.7% 10.9% 15.2% 48.8% 76.6% 47.7% 19.5% 9.2%
AB 30.5% 12.0% 8.7% 12.6% 44.3% 73.4% 46.8% 18.2% 11.2%
InfoMap 25.4% 12.7% 9.0% 19.2% 49.6% 66.0% 44.8% 17.5% 14.2%
LinkCom 21.8% 11.7% 14.4% 21.8% 49.1% 60.4% 44.2% 15.1% 12.2%
Louvain 19.2% 10.6% 13.4% 19.8% 43.2% 52.8% 43.9% 15.8% 11.3%
Newman 17.3% 10.3% 12.0% 17.1% 37.1% 50.3% 40.3% 18.1% 16.8%
MCL 16.4% 11.1% 14.2% 18.2% 32.7% 49.0% 39.9% 19.8% 16.4%
Metis 16.8% 11.4% 14.6% 16.7% 39.2% 45.9% 37.0% 20.3% 16.8%
Ann. 28.6% 20.5% 10.9% 12.8% 60.4% 60.3% 41.7% 22.3% 16.8%

a strong signature (and even L J1 and L J2 can be somewhat distinguished from one
another).

In our final experiment, we again perform a separate experiment for each of the 11
methods of defining communities. For each method M (e.g., BFS), we train the classifier
on a set containing representatives of method M from all nine networks, where each
element is labeled with its network of origin. The test set contains representatives of
every method except M, again from all nine networks, also labeled by the network.
In this experiment, we determine whether a classifier can identify which network a
community came from, even when that community was defined through a different
method than the examples on which the classifier was trained.

Table XII contains the results of this experiment. Naturally, the classifier’s per-
formance in this experiment is much worse than in the preceding two experiments,
because the elements in the training set are fundamentally different from the ele-
ments in the test set. Even so, we see again that some networks have very strong
signatures and are easily differentiated from the others, whereas for other networks,
the accuracy is approximately what one would expect if the classifier made decisions
at random. In particular, communities in Amazon tend to have structural similarities,
regardless of how that community was defined; that is, a classifier trained to identify
BFS sets in Amazon can also identify other types of communities in Amazon. We see
similar behavior in networks Fly and DBLP. Interestingly, we also see that the algo-
rithm class used in the training set is important as well. For example, SVMs trained
on BFS communities tend to do much better at classifying other communities than do
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Table XIII. Runtime Results for Networks DBLP, Amazon, LJ1, and LJ2
Each row represents a different class sample size. Cells contain average classification accuracy across all

classes and running time (in seconds) for that sample size.

DBLP Amazon LJ1 LJ2

Accuracy Runtime Accuracy Runtime Accuracy Runtime Accuracy Runtime
100 42% 174 38% 187 56% 146 53% 149
250 44% 912 40% 1,069 58% 751 56% 773
500 47% 3,368 42% 4,051 59% 2,724 58% 2,736
750 48% 7,725 43% 9,253 61% 5,841 59% 6,059
1,000 49% 13,718 44% 16,678 61% 10,219 60% 10,723

SVMs trained on Metis. This suggests that BFS communities are, in some sense, more
representative of the entire set of communities from a particular network.

8. DISCUSSION

This article presents a methodology to address the complexity of analyzing community
structure in light of the different notions of communities. This approach contrasts with
traditional approaches where the characterization of objects requires the exhaustive
enumeration of negative examples. Here we use the diversity of community structures
exhibited by different processes as references to understand other community struc-
tures. Our approach simultaneously considers a large number of algorithms, multiple
domains of application, and a broad spectrum of metrics to characterize community
structure.

The machine learning methods that we used can easily handle large numbers of
features and community detection methods, but the performance of the framework is
limited by the performance of these methods.

Almost every step of our method is highly parallelizable and can take advantage of
simple task distributions over large clusters and multicores. Once we obtain output
from various community detection methods (where each algorithm can run on an in-
dependent processor), we can easily calculate the community properties by spreading
the computation thereof among an arbitrary number of computers. Calculations of the
features that we considered in this article were fairly fast. In addition, most of the
communities that arise in practice are relatively small graphs. In the classification
portion of our framework, classifiers may have difficulty with large datasets, but one
can simply sample feature vectors from each class; indeed, this may even be necessary
to ensure class balance.

Table XIII contains runtime and accuracy values for each of our four larger net-
works at different sample sizes. In this experiment, which is similar to the experiment
described in Section 5 and presented in Table III, we trained an SVM on balanced
classes of various different sizes and evaluated the accuracy of the resulting classifier
on withheld elements on those classes. For each sample size, we present both the aver-
age accuracy of the classifier over all classes as well as the time required to create and
evaluate the model.

We see that smaller sample sizes result in remarkably faster model creation and
evaluation, with only a slight drop in accuracy. A practitioner highly concerned with
efficiency can thus obtain a fairly accurate model very quickly. These results illustrate
the scalability of our framework and so demonstrate its feasibility on large datasets.

It is important to emphasize that our work focuses on structural similarity, which
is a weaker requirement than accuracy. In other words, communities with similar
properties to real communities may not correspond exactly to the communities that
we may expect to find. Nevertheless, we firmly believe that mastering structure is a
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fundamental stepping stone in the development of algorithms to accurately find the
communities of interest.

Our experimental analysis includes 10 community detection algorithms, represen-
tative of popular algorithms in the literature, a collection of nine different networks
from diverse domains, and 36 structural properties. The results reveal, first, a high
variability among the output of community detection methods, which is demonstrated
by cross-validation performance of the classifiers, showing that each of these 10 classes
of communities was remarkably structurally consistent. Second, annotated communi-
ties have a distinct structure from what we expect; a classifier can distinguish most of
the mass of annotated communities from that of communities produced by algorithms.
In fact, their structure is closer to the output of baseline procedures, such as random
walks and breadth-first search, than to that of more structured popular algorithms.
Third, a small set of features explain the biases produced by different algorithms and
expose the structural signature of real communities, which were represented in this
study via meaningful annotations present in our datasets. Fourth, we can organize
the menagerie of available community detection algorithms by grouping them with
respect to structural similarities in behavior. This can be done via two mechanisms:
(1) by analyzing the behavior of algorithms with respect to the most relevant features
found in the preceding step, and (2) by applying a class selection method we defined
based on the scatter matrices to determine whether two classes are independent (i.e.,
each class bringing a new viewpoint to our analysis) or redundant (i.e., where multi-
ple classes contribute the same information to the collection). The latter approach is
also applied in our frameworks as a preprocessing step to improve the interpretabil-
ity of the separability measures. We saw that the two random walk classes and the
two modularity-based classes were quite similar and thus repeated our earlier exper-
iments after merging these pairs of classes. This naturally resulted in greater class
consistency and further cemented the dominance of the random walk methods when
classifying the annotated communities. Last, in contrast to our earlier experiments,
which analyzed the consistency of classes defined by community detection methods,
we analyzed whether communities from the same network tended to resemble each
other. We first restricted our analysis to one type of community detection method at a
time and showed that communities produced by the same method but from different
networks tended to be different in important ways. Interestingly, we showed that even
when a classifier was trained to differentiate between networks by using communities
produced by one particular community detection method, that same classifier was suc-
cessful even when applied to a test set containing communities produced by the other
community detection methods.

Our approach differs fundamentally from previous work in the area due to its super-
vised nature. The main message that resulted from our experimental analysis is that
community structure is not clearly defined and, moreover, not universal. In fact, there
is a broad range of structures that are generated by multiple definitions, heuristics,
and expectations. Accordingly, our supervised approach may be used by a practitioner
to make an informed decision about the most suitable algorithm for a given network in
the following way. First, we produce a test set comprising examples of the communities
that we are interested in finding, which could be either real or synthetic. Second, we
choose a set of algorithms that we want to evaluate. Finally, we apply our approach
using the target network and present the classifier with the test set. The classifier
assigns the probability mass of the test set to the class of algorithm that bears closest
resemblance to the examples. The algorithm that receives the bulk of the mass is the
algorithm that is most likely to succeed in extracting communities that structurally
resemble the ones in which we are interested. Researchers may also benefit from
our methodology when designing new community detection algorithms as a way to
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compare the behavior of new methods with existing ones. Finally, our framework
suggests a change in the way that we approach the problem of community detection.
Typical community detection methods treat the task of extracting communities as
an unsupervised problem in which a particular structure is extracted. However, this
approach presents little sensitivity to different purposes, different structures of inter-
est, and different domains of application. In contrast, we could start thinking about a
supervised approach that allows the user to specify the particular community structure
that they intend to find through examples. Then, a hypothetical algorithm would learn
structure from these examples and retrieve similar structures from the network.
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