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Abstract—We present a detailed study on data collection,
graph construction, and sampling in Twitter. We observe that
sampling on semantic graphs (i.e., graphs with multiple edge
types) presents fundamentally distinct challenges from sampling
on traditional graphs. The purpose of our work is to present new
challenges and initial solutions for sampling semantic graphs.
Novel elements of our work include the following: (1) We
provide a thorough discussion of problems encountered with
naı̈ve breadth-first search on semantic graphs. We argue that
common sampling methods such as breadth-first search face
specific challenges on semantic graphs that are not encountered
on graphs with homogeneous edge types. (2) We present two
competing methods for creating semantic graphs from data
collects, corresponding to the interactions between sampling of
different edge types. (3) We discuss new metrics specific to graphs
with multiple edge types, and discuss the effect of the sampling
method on these metrics. (4) We discuss issues and potential
solutions pertaining to sampling semantic graphs.

I. INTRODUCTION

Twitter provides an exciting venue for social network re-
searchers, allowing for the study of topics such as information
flow through large groups and network evolution. Twitter
has 320 million monthly active users with almost four-fifths
outside the United States.1 These active users post, read, and
respond to short messages (tweets) on a wide variety of topics
– from the commonplace to the significant.

Twitter contains many helpful features for information flow
analysis, including hashtags and timestamps on tweets. Im-
portantly, Twitter contains a rich social network graph with
various edge types, each with a different meaning. Users may
subscribe to (“follow”) any number of other users’ tweets.
Moreover, a user can call out (“at-refer”) other users by
username within a tweet’s text. Finally, conversations can be
tracked via explicit responses (“reply”) or message forwarding
(“retweet”). Each of these features can be captured in a rich
multiple-edge-type semantic graph (see Fig. 1).

The different edge types indicate varying types of inter-
action, both in quality as well as quantity. This semantic
richness is integral to the Twitter network, and provides unique
opportunities for researchers to analyze information flow in a
real-world, large-scale environment or study interesting social
IEEE/ACM ASONAM 2016, August 18-21, 2016, San Francisco, CA, USA
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1As of April, 2016 according to https://about.twitter.com/company.

Starting state: 
•  Bob follows Alice 
•  Eve follows Alice and Bob 
Series of tweets: 
Alice: ‘This is a great article: http://some.url’ 
Bob: (retweeting Alice) ‘This is a great article: http://some.url’ 
Bob: @Alice, that article was great. LOL. 
Alice: (reply to Bob) Then you’ll love this one: http://other.url’ 
Resulting graph: 

replies 
at-refers 
retweets 
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Fig. 1. A tiny sample semantic graph built from Twitter state and between-
user interactions.

phenomena such as network maintenance via interactions (e.g.,
at-refers and retweets) vs. static networks (followers).

Before Twitter data can be studied, it must be collected.
Twitter provides data access at varying cost levels. Herein, we
consider the data rates available via Twitter’s free API. The
free API has dramatic rate restrictions, resulting in limitations
on how much of the graph we can retrieve in any reasonable
amount of time. For instance, at the free query rates, it would
require many hundreds of years to query for all users’ data.

Any network analysis therefore requires sampling of this
semantic graph. While considerable work has been done
previously in analyzing various graph sampling techniques,
these typically assume a single edge type and fewer, if any,
limitations on the data collection. The challenges arising on
semantic graphs are less well-understood.

Sampling a Twitter graph using the free API poses two
major challenges. First, different edge types’ samples may rep-
resent different regions of the graph. For example, a random-
walk crawl on retweet edges might identify a completely
different node set than a random-walk crawl on follower edges
– even if both begin at the same node. Second, the Twitter free
API has drastically different rate restrictions for different edge
types. For example, the API allows over an order-of-magnitude
more timeline requests than follower requests over the same
time interval. Thus, even ensuring that the different edge types



cover the same region of the underlying graph, the sample may
contain many more edges of one type as a result of API bias.

In this paper, we examine Twitter graph sampling specifi-
cally, with an eye toward more general semantic graph sam-
pling. Novel elements introduced herein include the following:

• We describe problems encountered in naı̈ve breadth-first
search of Twitter and suggest possible improvements.

• We present two methods for forming semantic graphs
from node visits and edge collects.

• We present novel metrics specific to semantic graphs, and
analyze our graph-forming methods with these metrics.

• We describe problems with sampling semantic graphs,
and propose models that could explain why they occur.

Beyond reporting on our own analyses and results, this work
is intended to alert the social networks community to non-
obvious difficulties in collecting graphs from Twitter specifi-
cally, and in semantic graph sampling more generally. We hope
to spark interest in, and further the study of, these problems.

II. PREVIOUS WORK

Over the past decade, the quantity of available network
data has increased dramatically. Collecting and analyzing large
datasets can be prohibitively expensive, and so much of the
research literature has focused on the graph sampling problem:
How can one select vertices and edges from a large graph
so that the structure of the sampled subgraph is a good
representative of the complete data?

There are two distinct strains of network sampling. The
first corresponds to crawler-like sampling techniques: Given
a limited view of the network, how to decide which data to
add to the sample?

For instance, a typical web crawler begins at a web page,
and transitions to another page, etc., and at each step must
make its next decision based on the neighborhood of the
current page and what it has seen in the past [1]–[3]. The
second class of network sampling techniques assumes full
access to the complete data, and the goal is to downsample
the data to some desired size to make analysis feasible [4],
[5]. This model of sampling is most relevant when analysis,
rather than collection, of the data is costly.

In both types of sampling, the goal is generally to produce a
sample that is substantially smaller than the complete network,
but retains important structural properties. These properties
vary depending on the goal. For example, Maiya and Berger-
Wolf attempt to preserve community structure [5], while
Leskovec and Faloutsos evaluate the quality of a sample by
measuring how well it preserves various graph statistics, such
as the degree distribution [4].

Sampling Algorithms. In this paper, we deal with the
case when collecting data is time-consuming, and so focus on
the sampling via graph exploration model. Many techniques
exist for such sampling – random walks, breadth-first search
(BFS), and related algorithms are especially popular. Bias in
such methods can be reduced through Metropolis-Hastings or
reweighting techniques (e.g., [6], [7]). Forest-fire sampling is a
modification of a BFS traversal where each neighbor is added

to the sample and visited with probability p (instead of all
neighbors). In [4], Leskovec and Faloutsos show that forest-fire
sampling preserves several important graph properties, such as
diameter and size of the largest connected component. Snow-
ball sampling (similar to BFS, but only a fixed number of each
node’s neighbors (rather than all) are visited) is also commonly
used [8]. For further background on sampling, [9] provides an
excellent survey of the sampling literature.

Sampling Bias. The bias introduced by sampling techniques
has received considerable interest. Achlioptas, et al. show that
the traceroute sampling method can introduce a power law
degree distribution when the underlying network has a Poisson
degree distribution [10]. Stumpf, et al. show similar results
for the case when the sample is generated by randomly sam-
pling nodes, and that sampling from scale-free networks may
not produce samples with scale-free degree distribution [11].
Kurant, et al. show that BFS introduces a bias toward high
degree nodes (e.g., they show that a BFS sample overestimates
the average node degree of a Facebook network by a factor
of 3.5) [12]. Random walks are known to be biased toward
high degree nodes [13]. Modifications can help alleviate this
bias; for example, Henzinger, et al. use a Metropolis-Hastings
random walk to sample URLs uniformly at random [6].

Maiya and Berger-Wolf show that certain types of sampling
bias can be beneficial to graph applications [14]. In particular,
they argue that bias towards samples with high expansion
allows for discovery of previously-unseen regions of the graph.

Sampling Twitter. Researchers have also studied sampling
on the Twitter network specifically. Morstatter, et al. compare
the sampled data provided by the Twitter Free API to the full
Twitter Firehose, and showed that the Twitter Free API sam-
ples can be poor representatives of the complete network [15].
A subset of the same authors address the problem of finding
bias in the free 1% sample of Twitter data. Avrachenkov, et
al. address the problem of finding high degree nodes with as
few API requests as possible [16]. Ghosh, et al. compare a 1%
sample generated by random sampling vs. a sample generated
by collecting content from topical experts, and find that the
sample of experts is more diverse and richer [17]. Salehi, et al.
use respondent-driven sampling, and show that it outperforms
Metropolis-Hastings random walk sampling with respect to
capturing certain Twitter-specific features [18]. De Choudhury,
et al. study how the sampling method can affect discovery of
information diffusion paths in Twitter, and argue for including
both topology as well as content in the sampling process [19].

III. TWITTER DATA COLLECTION

In this section, we provide details on Twitter’s free API.
The rates increase with cost. We describe our data collection
implementation and the results from three different collects.

Twitter Free API. Twitter’s API provides access through
specific requests that are rate limited within a 15 minute
window. Although the API allows for many different requests,
we focus on the four requests we used to create a semantic
user graph (Twitter API names in parenthesis; see Fig. 2):

• Get friends (GET friends/ids),
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Fig. 2. An overview of our data flow for retrieving data from Twitter via its
API. Each gear represents a different API call. As the different requests have
different rates and may require different number of requests to get full data
for any user, we use separate queues for each request.

• Get followers (GET followers/ids),
• Get timeline (GET statuses/user timeline), and
• Translate username to ID (GET users/lookup).

A friend is the opposite of a follower: The friends request
returns those who the input id follows; the follows request
returns those who follow the input id. The timeline request
returns the input user’s most recent tweets, which we use to
identify retweets, replies, and at-refers. As the at-refer is the
only of these data which uses usernames, we translate these
to user IDs to integrate with the other results.

The free Twitter API limits friend and follower requests to
15 requests every 15 minutes. A request must specify a user
ID, and returns 5,000 of its friends or followers (or all, if fewer
than 5,000). As some users have more than 5,000 friends or
followers, it may require multiple requests to get all of a user’s
friends and followers. As some users have no followers, some
requests result in no new users or edges.

The free API limits timeline requests to 300 requests
every 15 minutes. Each request can return up to 200 tweets,
beginning with the most recent, and indicates if more tweets
are available. Repeated requests can yield up to 3,200 tweets.
Each returned tweet has a marker to indicate if it is a reply
or retweet and the other user the reply/retweet is attached to.
By parsing the tweets, we identify at-refer usernames.

The free API limits username-to-ID requests to 60 requests
per 15 minutes with up to 100 users per request.

Our Collection Method. For several reasons, it is imprac-
tical to request data for each user via all APIs simultaneously.
First, the query rates for the three main requests (friends,
followers, timeline) vary by more than an order of magni-
tude. Second, the number of requests required to exhaust a
user’s obtainable data varies considerably. Therefore, we use
a separate queue for each of these collectors.

With three separate queues, we must decide how to let the
queues interact with one another. In this work, we choose to
let each queue add newly discovered users to all queues. As
friend and follower requests point in opposite directions from
the seed user, if collectors did not feed each others’ queues,

it would quickly result in completely disparate users being
visited by the collectors. This decision seeks to maximize the
overlap of those users visited by more than one collector.

Therefore, each collector (friend, follower, timeline) asyn-
chronously makes requests from its own queue. After getting
the top user id from its queue and ensuring it has not already
visited this id,2 it requests data from the API. Requests are
processed and repeated for each user until all available data for
that user has been obtained. Each collector separately ensures
it does not exceed its API-mandated rate.

We wrote our Twitter collection in Java using Twitter4j,3

an unofficial library for the Twitter API. We implemented the
collectors’ queues as priority queues based on the depth at
which an ID was discovered. Thus, BFS uses ascending depth
order while depth-first uses descending depth order.

For the collections described below, we used BFS starting
from a quasi-random seed user id. Specifically, we watched 15
minutes of the Twitter Streaming API (a 1% sample of tweets
as they are published), and randomly selected an id from those
ids. Note that this strategy biases toward starting with a more
active user.

Challenges. We face several challenges in collecting Twitter
data. First, due to the drastically different query rates, the
resulting network may be dominated by a particular type of
edge. For example, in one dataset, we discovered over 8,000
unique nodes in the first 15 minutes of requests. As friend
and follower requests are limited to 1,440 per day, (if all users
require only one request) it will take over 5 1/2 days to collect
all of the friends and followers for these users discovered in
15 minutes. Due to some users requiring more than 1 request
each for friends and followers, this duration can easily extend
past 8 days. Second, given that it is infeasible to obtain all
edges of all types for each sampled user, determining which
edges to request poses a major challenge.

Twitter Collection Results. We describe the results of three
separate runs of our Twitter collection method. In Section IV
we describe how we developed graphs from these results.

Table I lists the duration and number of requests for our
three datasets. The variation between number of friend and
follower requests is affected by slight variation between the
two collectors’ timing, and how we counted requests. The
Twitter API sometimes returned error types when we requested
values. These errors indicated protected accounts, or other
unspecified Twitter problems. We did not repeat these error-
returning requests. The timeline collector can make far more
requests during the same period of time.

Although we made many API requests, a large number of
the visits reported in Table I were repeats to the same user.
The number of users we visited per collector and dataset is
shown in Table II. To collect all data for a user, we required on
average 1.8 friend, 36 follower, and 13 timeline requests per
user. The followers result was skewed heavily by our finding

2By checking upon removal from the queue, we avoid the more costly
check before adding – which would require checking if an ID was visited
and if it was already in the queue.

3http://twitter4j.org/



TABLE I
REQUESTS PER COLLECTOR

Dataset Duration
(days) Friend Follower Timeline

1 7 7,773 7,259 139,540
2 9 8,690 9,002 168,822
3 7 6,511 6,670 118,682

TABLE II
USERS VISITED PER COLLECTOR

Dataset Duration
(days) Friend Follower Timeline

1 7 4,435 118 13,573
2 9 4,797 878 11,319
3 7 3,780 166 10,050

TABLE III
REQUESTS WITH ZERO RESULTS PER COLLECTOR

Dataset Duration
(days) Friend Follower Timeline

1 7 1,629 13 769
2 9 1,159 289 517
3 7 1,656 36 2,011

users with millions of followers.4

When accounting for the actual number of users visited
(limited by both request rate and number of requests needed),
the disparities seen in Table I shifts. While the number of
users visited by friends is now around 1/3 of those visited by
timeline, the number of users visited by followers is far fewer.

As shown in Table III, it is not uncommon for a user to have
no friends, followers, or relationships expressed with tweets.
In fact, requests made that return no results can account for a
significant number of requests (as many as 1/4).

IV. SEMANTIC GRAPH CONSTRUCTION AND ANALYSIS

In this section, we describe our process for developing
semantic graphs from the available Twitter data. We first
introduce notation needed for formal study of graphs with
multiple edge types, then define metrics for multi-edge-type
semantic graphs. We define two graph construction techniques,
and study these techniques’ implications using our metrics.

Notation. Let G = (V, E) be a directed, semantic graph
with node set V and edge set E that represents the structure
of the Twitter network; we will often write V(G) and E(G) to
denote the nodes and edges, respectively, for graph G. Each
edge e = (u, v, i) ∈ E(G) is a triple with source node u ∈
V(G), destination node v ∈ V(G), and integer i ∈ {1, . . . , q}
representing the edge type. It follows that the edge list E can be
split into disjoint sublists E1, . . . , Eq , that satisfy ∪qi=1Ei = E .
For our application, there are q = 4 edge types corresponding
to follow, at-refer, reply, and retweet.

Metrics for analysis. We use and adapt many common
metrics from graph analysis to the case of multiple-edge types.
This generalization provides new opportunities for study.
There are numerous possibilities including the distribution of
node degree on follower edges jointly with node degree on

4In collect #1, one user had 14.5 million followers (2,864 requests); in
collect #3, a user had 10.9 million users (2,159 requests).

at-refer edges, and the amount of correlation between node
degree of follower edges and clustering coefficient of retweets.
When studying these semantic graphs, it is important for us
to be specific about where we are computing these metrics for
each separate edge type i, vs. across multiple edge types. We
therefore formally define some graph metrics here.

Traditionally, n and m refer to the number of nodes or
number of edges in a graph, respectively. Similarly, we define
ni to be the number of nodes incident to edge type i and mi

to be the number of edges of type i in G. Let
Ni(u) = {v ∈ V(G), v 6= u : (u, v, i) ∈ E(G)} (1)

denote the set of nodes incident with node u ∈ V(G) by
an edge of type i ∈ {1, . . . , q}. Therefore, Ni(u) is the
neighborhood of node u across edge type i. Further, let
Ti(u) = {(v, w, i) ∈ E(G) : v, w ∈ Ni(u);u 6= v 6= w} (2)

denote the collection of triangles that include node u and are
connected by edge type i. The number of i-edge triangles that
include node u is then denoted by tu,i = |Ti(u)|.

The i-edge degree of node u ∈ V(G) is equal to the number
of edges of type i that contain u, that is,

du,i = |{(u, v, i) ∈ E(G)}|+ |{(v, u, i) ∈ E(G)}|. (3)
The i-edge clustering coefficient of u ∈ V(G) is defined as

cu,i =
2 tu,i

du,i (du,i − 1)
(4)

if du,i > 1 and 0 else, and the i-edge graph-average clustering
coefficient is simply (1/ni)

∑ni

u=1 cu,i.
For any of the above node-specific, edge-type-specific met-

rics, we can compute a population distribution across our
collected graph. For instance, we define the degree distribution
of edge type i as

δi(a) =

n∑
u=1

1(du,i = a), a = 0, . . . , n (5)

where 1(x) returns 1 whenever the boolean is true, else 0. We
define distributions for all of the above metrics similarly.

When considered separately, each of the above defines a
marginal statistic. Any of these statistical metrics can be used
to make comparisons between two or more edge types within
a semantic graph. For instance, we can define a joint degree
distribution across two edge types i, j as

δi,j(a, b) =

n∑
u,v=1

1(du,i = a, dv,j = b) (6)

for a, b = 0, . . . ,m. Joint distributions for clustering co-
efficients, number of triangles, and any combination of the
three, are also possible, as are higher-order joint distribu-
tions by considering groups of three or more variables. For
simplicity, we limit our discussion of joint statistics to the
Pearson correlation coefficient, which describes pairwise edge-
type metrics. Assortativity, used to quantify the correlation of
degree between pairs of linked nodes [20], is a similar concept
but specific to node degree.

Graph construction. We now have a list of users visited by
our three collectors (friends, followers, timeline). These are the
nodes of our graph. Each collector also outputs a list of edges



observed by one of four types (followers, at-refers, retweets,
replies). Note that we flip the direction of friend edges to make
them follower edges and equalize their type. However, we did
not visit the endpoints of all observed edges, and therefore
we cannot simply form a graph from the edges returned (e.g.,
edge (u, v) was observed upon querying node u, but node v
was never visited, then the edge should not be included).

As mentioned, our collector system collects some edge types
separately. Unless all visits are constrained to occur at the rate
of the slowest collector, there will be nodes visited by some
edge type but not another. Therefore, the resulting graph will
contain some nodes visited by some collectors, but not by
others. We interpret each edge type as a different “layer” in
the graph, denoted by Gi. In building our semantic graph, we
noted two approaches in how to construct each Gi.

Recall from Section III that data is collected by the follower,
friend, and timeline collectors. One approach for constructing
Gi is to adopt the traditional single-edge-type approach where
each collector marks all nodes visited separately. Therefore,
we refer to this approach as collecting separately. In this
approach, we construct node list Vi,j ⊂ V to be the collection
of nodes that were visited by collector j (j = 1, 2, 3; timeline,
friend, or follower) and exist on an edge of type i. This
approach results in the following definition for Gi:

Gi = (Vi,j , (Vi,j × Vi,j) ∩ Ei) , i = 1, . . . , q. (7)
Thus, when collecting separately, for an edge to be included
in Gi, both the source and destination nodes had to be visited
by collector j that identified edges of type i.

Another approach for constructing Gi takes advantage of
multiple collectors visiting largely but not perfectly overlap-
ping sets of nodes. Furthermore, some collectors visited far
more nodes than others. To take advantage of these features,
in this approach, we construct node list Vi ⊂ V to be
the collection of nodes that were visited by any collector j
(j = 1, 2, 3 as defined above). The resulting graph can be
obtained by Eq. (7) with Vi,j everywhere replaced by Vi.
We refer to this approach as collecting jointly. Thus, when
collecting jointly, for an edge to be included in Gi, only the
source had to be visited by collector j (else we could not have
found the edge), but the destination had to be visited by any
collector. Note that the two approaches result in overlapping
node sets that satisfy Vi,j ⊆ Vi.

Effects of Collecting Separately vs. Jointly. Figure 3
shows the increase in graph size for the three graphs created
by the three datasets. As at-refers, replies, and retweets were
all derived from the timeline collector which visited far more
nodes, unsurprisingly, collecting jointly barely changes the
resulting graph’s size (both number of nodes and number of
edges). However, as the followers graph is built from data
collected by the friend and follower collectors which each
visited far fewer nodes, collecting jointly drastically increases
the resulting graph’s size.

Aside from the marked increase in size on the followers
graph when collecting jointly, we examined marginal distri-
bution metrics. As the timeline-based edge types (at-refer,
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Fig. 3. The number of nodes (left) and edges (right) for all three datasets
collected separately and jointly. Note that only the follower graph’s nodes and
edges change considerably between collecting separately or jointly.

retweet, reply) increased in size only slightly, unsurprisingly,
there were no marked changes in any of their measures. For
the follower edges, we note the following changes:

• Degree distribution: There are both more degree 1 nodes
and the high degree nodes have higher degree.

• Per-node triangle-count distribution: The distribution is
higher throughout: There are more nodes with just about
every number of triangles.

• Connectivity: There are more small disconnected cliques
on this edge type (mostly two-node), and many more
nodes joined the large weakly connected component of
the followers graph with very small or no increase in the
diameter of the component.

• Assortativity: The assortativity changed slightly (an in-
crease or decrease of 0.08 – depending on dataset).

• Clustering Coefficient: The clustering coefficient de-
creased around 0.04 (approximately 36%).

Figures 4–6 show how pairwise correlations across edge
types vary between both our different datasets and collecting
separately vs. collecting jointly. In all three plots, all three
pairwise correlations involving only the timeline-collected
edge types (at-refer, reply, retweet) remain consistent whether
collected separately or collected jointly. Although generally
slight, in all datasets and degree correlations (Fig. 4) including
followers, the correlation decreases when collecting jointly.
For the correlations across number of triangles (Fig. 5) includ-
ing followers, the results are consistent within dataset: Datasets
1 and 3 both slightly decrease; dataset 2 slightly increases.
For correlations of clustering coefficient (Fig. 6) including
followers, the results parallel those seen with number of
triangles: Datasets 1 and 3 both decreased; dataset 2 increases,
but to even a lesser extent. This makes sense as clustering
coefficient is a function of degree and number of triangles.

In short, collecting jointly functions well to increase the size
of the resulting graph. However, it affects the internal consis-
tency of the graph when compared against largely unaffected
portions of the graph (as measured by the correlations between
followers and timeline-based edges). Specifically, correlations
between edge types appear to mostly decrease in our three
collects. We are only able to observe these changes because
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Fig. 4. The correlations across degrees between all pairs of edge types for
each of our three datasets each collected both separately and jointly.
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Fig. 5. The correlations across number of triangles between all pairs of edge
types for each of our three datasets each collected both separately and jointly.

of our novel multiple-edge-type measures.
We do not here draw conclusions about Twitter because this

data was collected via a BFS and is thus biased. It is not clear
that the BFS bias here is the same as what is known from the
literature on single-edge-type graphs.

V. SUBGRAPH SAMPLING

Much of network analysis research uses publicly avail-
able datasets, which were collected via APIs or crawls.5

When studying samples, one will typically sample from these
datasets, which are themselves samples. Previous work has

5e.g., the Stanford Large Dataset Collection
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Fig. 6. The correlations across clustering coefficient between all pairs of edge
types for each of our three datasets each collected both separately and jointly.

Space sampled 
via timeline 

Space sampled 
via subsamplers 

Space sampled 
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Fig. 7. Our original conception of how our sampling analysis would perform.
Although we realized timeline had collected well beyond how far followers
would reach, we expected that many days of followers collection would exceed
the reach of a single day of sampling.

illustrated how different sampling techniques affect resulting
graph properties (e.g., [4], [14]), but it is not known to what
extent these biasing effects hold for multi-edge type graphs.
Moreover, it is possible that sampling semantic graphs faces
fundamentally different biases or challenges. In sampling from
our collected Twitter data, we identified a surprising problem
– one we have not seen reported previously in the literature.

We implemented a sampler with a similar method to our
Twitter API collector (see Sec. III). It had three queues and
requested data for nodes starting from a seed node (with each
sampler adding new IDs to all three queues). This sampler
also used (simulated) 15-minute windows with rate limiting,
iterating between the three samplers. Unlike the Twitter API
system we built, this sampling system requests data from the
stored results from our previous collects. Therefore, we can
easily differentiate between the users the sampler requests that
our Twitter API collector visited but got no results back (empty
visited) and the users the sampler requests that the collect saw
but did not visit (unvisited).

In a graph with only one edge type, we expect that as long
as we begin the sampling process toward the middle of an
original BFS collect, the process would stay within the space
that had been collected earlier (Fig. 7).

However, we observe a surprising result: When attempting
to collect a BFS sample from our original BFS collect, we
very quickly reach the outer boundaries of our original collect.
Table IV shows the results of attempting to execute our BFS
sampler starting from the original seed node of our Twitter-
API collects for one hour’s samples (two orders of magnitude
smaller than the full datasets). For all datasets, we found that
friends and followers requested far more unvisited users in the
first hour than successful requests; timeline requested a similar
number of unvisited users than successful requests. This level
of failure rate would far overshadow any differences in bias
we might see between different sampling techniques.

This surprising result is caused by one prime issue: Due to
the asynchronous nature of our Twitter API collect software
(and varying network return speeds), we cannot replicate the
order that the various collectors were returning results from
the API. That is, we can’t know at any moment whether
the timeline should return its results first, or if the followers
request returns first. Thus, because the BFS sampling process
may identify edges in a different order than the original collect



TABLE IV
SAMPLING SUCCESSFUL AND FAILED REQUESTS

Dataset Sampler
Type

Successful requests
(1st hour)

Failed requests
(1st hour)

1 Friends 60 816
2 Friends 60 548
3 Friends 60 723
1 Followers 60 4,589
2 Followers 60 28,189
3 Followers 60 644
1 Timeline 1,200 1,052
2 Timeline 1,200 1,141
3 Timeline 1,200 625

process, it can find unvisited users very quickly.
Three separate factors demonstrate the extent of this prob-

lem. First, the above analysis starts from the original seed,
but to do a sampling bias estimate, we must start from many
random places within the space. If the original seed is this
close to the edges, we expect that random seeds will be
even closer. Second, BFS is the slowest expanding technique
we would consider in our analysis. Forest-fire, snow-ball, or
depth-first sampling would each run to the edges far faster.
Finally, we were finding this significant number of failed
requests in the first hour: Note that we need many hours of
collecting for the graphs to grow large enough for reasonable
results.

We propose an explanation for this surprising result. First,
the semantic graph may suffer from the curse of dimensional-
ity.6 In brief, the different collectors and edge types add new
dimensions to the data. As data expands in dimensionality,
it’s density decreases, so the number of points between any
datapoint and an edge of the space decreases. Second, the
problem is exacerbated by the disparity in the collection rates.
That is, instead of a spherical space with a thick inner volume,
the lower friends and followers rates creates a thin elliptical
space where all points are even closer to the boundary.

This effect is dramatically exaggerated by the heterogeneous
nature of semantic graphs. Because the different edge types
adjacent to a node may lead to completely different regions
of the graph (e.g., an individual’s followers may be disjoint
from his at-refers), sampling in an order different from the
original collect process may quickly lead to a lack of sufficient
data. This is exacerbated by the large differences in collection
rates for the different edge types. Because much of social
network analysis takes place on network samples, it is critical
to understand the special challenges arising in semantic graphs.

VI. CONCLUSIONS

New Problems from Semantic Graphs and Sampling. We
briefly summarize here several problems specific to semantic
graphs that we encountered herein but have not seen discussed
in the literature.

First, different node and/or edge types may require separate
collectors. This results in the collectors likely discovering
different neighbors for the same node. Herein, we recommend

6Term coined by Bellman [21]; an overview of applications in many areas
at https://en.wikipedia.org/wiki/Curse of dimensionality

addressing this with a shared-fed queue (see Figure 2). Second,
different collectors may have different sample rates. If not
handled by throttling all collectors to the slowest rate, this
leads to many critical decisions in graph construction:

• Multiple queues: Each collector will need its own to-visit
queue (see Figure 2).

• Different visit counts: Many nodes will not be visited all
of the collectors. How are such nodes to be included in
the semantic graph? Herein, we recommend including all
nodes visited by at least one collector (see Section IV).

• Edges between nodes visited by different collectors: When
an edge is discovered by one collector visiting the
source, but the destination was visited only by another
collector, should that edge be included or discarded.
Herein, we present both options as collecting separately
and collecting jointly (see Section IV). Until we better
understand how the two choices affect biasing, we cannot
recommend one over the other.

Third, shared-fed queues with variable collect rates suggest
possibilites for different strategies for different collectors. For
instance, we identified a weak correlation between the number
of visits required for friends and followers collectors on nodes
of low-to-moderate degree (not shown above). This correlation
broke down for the truly massive – those with millions of
followers did not follow millions of others. However, if a graph
of more “average” users were desired, we could have identified
those with one of the collectors and pushed them as higher
priority to the other. Note that any sampler where the user
visited may be completely disconnected from others visited
by this collector would have to be formed into a graph via
collecting jointly, as it’s likely that collecting separately would
eliminate most (if not all) edges discovered by the visit.

Fourth, we propose that a model based on the curse of
dimensionality explains why semantic graph sampling may
lead to more unvisited nodes requested than in traditional
graph sampling (see Section V).

Finally, a Twitter-specific issue arose from multiple collec-
tors. Twitter allows queries for both followers and friends, but
these sample the same set of edges but in different directions.
Herein, we used BFS for both collectors (see Section III) and
simply performed the union on the resulting collected edges
(see Section IV). However, we believe this collection feature
deserves more exploration both theoretically and practically.

Specific to Semantic Graphs? In this paper, we describe
a new sampling problem in semantic graphs observed in our
work on Twitter. This sampling problem differs from previous
works in two principal extents. First, we have a multiple-edge
type graph collected via multiple collectors with separate (but
shared-fed) queues. Second, in our sampling analysis, we do
not sample directly on the resulting graph, but back to the
original data. When sampling against the original data, we
could identify when we requested details on a node that was
not visited (and therefore was not in the “full” semantic graph).
This was appropriate as any improved collection technique for
our needs would need to be implemented against the Twitter
API – not against a resulting semantic graph built from the



results of a Twitter API collect. An open question is thus how
much less prevalent the edge problems we encountered are in
graphs derived from single-edge data collects.

We proposed a model for explaining this problem. The first
part of the model (curse of dimensionality) could be tested
by reducing the number of original collects and samplers
and seeing if the reduced-dimensionality result failed at lower
rates. The second (varying dimensional thickness) could be
tested by performing various collects where the different
collectors run for different amounts of time. This allows the
slower collects to expand out further to more nearly approach
the faster collect’s size. We would expect that more equally
balanced collects would result in lower failure rates.

Enhancements to the Twitter API. We will now briefly
suggest some API improvements which could result in im-
proved graph collection. While these are informed by our
experience as customers of the Twitter API, we do not intend
them as any criticism of the current API. We appreciate the
free access to useful, real-world information it provides.

Several sampling techniques require sampling a random
edge or edges from the current node (e.g., depth-first, and
snow-ball sampling respectively). However, the Twitter API
returns results in reverse chronological order. Moreover, the
results are not returned as page i of n, but as an iterator. That
is, if the results of a single query indicate more results are
yet available, you may request more with the returned handle
to the next set of results. This could be improved if the API
supported requesting an arbitrary page i of n.

The widely disparate rate limitations between timeline and
friend/follower requests leads to a wide disparity between
the number of users visited in any time period. Our current
working model for why semantic graph sampling may have
failed indicates this as one of the chief problems. However,
even if we had found no semantic graph sampling problems,
this leads to a dataset with a heavily lopsided group of users
that were visited by only the faster collector. We don’t know
why the disparate rates were specified, but if they could be
brought to parity we believe it would improve sampling ability.

Concerns for Sampling and Information Flow. As de-
scribed in Section I, our interest in collecting Twitter graphs
was influenced by information flow in real-world social net-
works. When we began this exploration, we considered that
(while any partial Twitter graph would be missing many
possible paths between nodes) most of the graph would be
well represented in a fairly full “middle”. Our realization that
even the seed node is very close to the edges (Section V) leads
us to the critical question: If all nodes are close to the edges,
is any information flow analysis on incomplete data likely to
be missing possibly short paths between pairs of nodes?
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