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ABSTRACT
No ma�er how meticulously constructed, network datasets are

o�en partially observed and incomplete. For example, most of

the publicly available data from online social networking services

(such as Facebook and Twi�er) are collected via apps, users who

make their accounts public, and/or the resources available to the

researcher/practitioner. Such incompleteness can lead to inaccurate

�ndings. We introduce the Adaptive Edge Probing problem. Suppose

that one has observed a networked phenomenon via some form of

sampling and has a budget to enhance the incomplete network by

asking for additional information about speci�c nodes, with the

ultimate goal of obtaining the most valuable information about

the network as a whole. Which nodes should be further explored?

We present ϵ-WGX, a network-based explore-exploit algorithm

for identifying which nodes in the incomplete network to probe.

Aggregated over multiple datasets and a wide range of probing

budgets, we �nd that ϵ-WGX outperforms other explore-exploit

strategies and baseline probing strategies. For example, for the task

of adding as many nodes as possible, over incomplete networks ob-

served via four popular sampling methods, at the task of adding as

many nodes as possible, ϵ-WGX outperforms the best comparison

strategy by 12%-23% on average.
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1 INTRODUCTION
Collecting network data is expensive, time-consuming, and labor

intensive, so most network analyses are conducted on incomplete,

partially observed graphs. For example, many researchers obtain
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graphs from online data repositories for their experiments or collect

a limited amount of data through APIs. However, these graphs are

o�en poor representations of the fully observed graph. Having

access to more complete data would lead to more accurate analyses,

but data acquisition is costly.

A great deal of work has been devoted to the network sampling

problem, but here we consider a di�erent problem: If a researcher

or analyst is given an incomplete network dataset (e.g., one that

was collected by a di�erent individual for some other purpose),

how can that person collect a small amount of additional data to

best enhance the incomplete network?

ProblemOverview: We de�ne the Active Edge Probing (AEP) prob-

lem as follows: Suppose one obtains an incomplete network Ĝ that

is part of a larger network G, without knowledge of or control over

how Ĝ was generated or observed. Given some amount of budget

to obtain more information, which nodes in Ĝ should one choose

to further explore? �e speci�c model for this exploration depends

largely on the data collection process (see the discussion below

about Probing Models).

Applications: Consider the common case where an organization

has access to data within its boundaries, but limited data outside

these boundaries. �ere are many such examples: for instance, a

micro-loan company may obtain each applicant’s Facebook account,

and use his/her social network to make credit decisions about the

applicant. In this case, the company wishes to close wedges in the

incomplete network, for example by providing some incentive to

external users to obtain their data.
1

Alternatively, consider an Inter-

net mapping organization that wishes to identify as many machines

as possible in the network. Incomplete maps of the Internet exist,

and additional data may be collected by placing monitoring hard-

ware on speci�c machines/routers. �is is an expensive process, so

sampling decisions must be made judiciously.

Probing Models: We have observed that the ideal probing algo-

rithm varies substantially depending on the probing model, which

describes the information that is returned in response to a query.

For example, in response to a query on a node, an API might return

all of that node’s neighbors, the node’s most recent communica-

tion, or k random neighbors. In this paper, we consider the case in

which a query returns a single random edge adjacent to the queried

node. For instance, a probe might represent acquiring an additional

random retweet for a Twi�er user. �is retweet may correspond to

an edge already observed. For discussion of other models, refer to

our earlier node probing work in [17].

1
Example based on communications with colleagues at h�p://www.lenddo.com.
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ProposedMethod, ϵ-WGX: To solve the AEP problem, we present

ϵ-WGX (Weighted Graph eXplore), an explore-exploit strategy that

takes advantage of the networked representation of the data to de-

termine which node to probe. �e strength of ϵ-WGX is that it does

not require background information about (1) how the incomplete

network was generated, (2) the underlying network structure of

the fully observed graphG , or (3) which nodes are good choices for

a speci�c goal/reward.

We compare ϵ-WGX to several baseline strategies, including

structural and explore-exploit strategies. We conduct experiments

on ten real networks. In this work, we consider three probing

goals: (1) Adding as many new nodes as possible to the observed

network, (2) adding as many triangles as possible to the observed

network, and (3) adding as many new nodes of a certain type to the

observed network. Aggregated across sampling methods, networks,

and reward functions, ϵ-WGX regularly outperforms the baseline

strategies and the other explore-exploit algorithms – e.g., by an

average of at least 12% - 23% on the task of adding as many nodes

as possible to the incomplete network.

At a high-level, our goals might be considered similar to the

goals of network sampling and link prediction. ϵ-WGX di�ers from

network sampling methods primarily in that it is able to adapt

to a variety of probing goals and network structures, as opposed

to standard network sampling algorithms, which are optimized

for one particular goal (e.g., maximizing the number of observed

nodes). Depending on the probing goal (e.g., adding triangles to

the observed network) ϵ-WGX may appear to be similar to link

prediction. However, in such cases, link prediction methods are

limited to adding edges within the initially observed network, while

ϵ-WGX a�empts to optimize the entire observed network with

respect to a feature of interest. ϵ-WGX might thus learn that the

initial observation is in a triangle-poor region of the network, and

moving to a more triangle-dense region of the network would lead

to more triangles than adding edges within the initial observation.

ϵ-WGX di�ers from existing network sampling methods in that

it is a general method in which the user speci�es the goal of the data

collection (e.g., observing new nodes or adding additional triangles

to the network). Additionally, rather than sampling a network from

scratch, it supplements an existing incomplete network observation.

Contributions: Our contributions are as follows:

• A new research direction: We formalize the Adaptive Edge
Probing (AEP) problem, which is important to a variety

of applications in complex network analysis and graph

mining.

• An original algorithm for the explore-exploit formulation: We

propose the ϵ-WGX algorithm, which outperforms other

explore-exploit strategies at the AEP problem.

• A thorough empirical study: Our experiments on various

data sets and objective functions show that ϵ-WGX regu-

larly outperforms other approaches.

• A theoretical analysis of regret: We prove that ϵ-WGX has

linear regret, meaning that it performs a constant factor

worse than optimal. Although this regret is large, we argue

that it is necessary, because the problem se�ing leads to

rewards that are rapidly changing.

2 PROBLEM STATEMENT
In the AEP problem, we want to analyze a graph G, which is a

fully observed, networked representation of some social or physical

phenomena. But we have access to Ĝ , which is a partially observed

version of G. A node or edge is ‘observed’ if it appears in Ĝ. To

improve the accuracy of our analysis, we have a budgetb, which can

be used to obtain additional data to enhance Ĝ . Each unit of budget

is equal to probing a selected node in Ĝ. �e probe involves going

to the source of the data and receiving a random edge adjacent to

the selected node in the fully observed graph G. Note that this is

not the link prediction problem, as we only specify one node (rather

than querying for an edge between two speci�ed nodes), and may

obtain an edge leading to a previously-unseen node.

Definition 1. Adaptive Edge Probing (AEP) Problem.
We assume that we are given:

• An incomplete graph Ĝ = (V̂ , Ê)
• Probing budget b ∈ N
• A global reward function д : H ⊂ G → R, which measures

the quality of an observed network with respect to a speci�c
goal (e.g., if the goal is to observe as many nodes as possible,
how many nodes are in H?).

• A local reward function f : (H , e ) → R, where H is an
observed network and e is an edge. f quanti�es the value of
edge e in graphH . As discussed in Section 4, the local reward
function is related to the global reward function, but does
not simply measure the improvement in д a�er an edge is
observed.

We are allowed to perform b iterations of probing. Let Ĝk be the graph
observed a�er k iterations of probing. In iteration k , a probe consists
of selecting a node u from Ĝk−1

. �e result of probing a node u is an
edge, which is selected uniformly at random from among all of u’s
neighbors in G, including edges seen before. �e goal is to select b
nodes for probing such that д(Ĝb ) is maximized.

As an example, consider the graph depicted in Figure 1. Black

nodes have been probed at least once, and so each black node has at

least one observed edge incident to it. However, it is not necessarily

the case that all edges adjacent to a probed node have been observed.

�e observed graph additionally contains gray nodes, which have

been observed but not yet probed. �e underlying graph contains

white nodes, which the observer is unaware of. �e challenge is

to determine which of the observed (black or gray) nodes should

be probed next so as to improve the value of the global reward

function by the greatest amount.

Challenges. �ere are two major challenges in designing a

successful probing strategy. (1) For a reward function (such as

maximizing the number of nodes in the network Ĝb ), it is not

immediately clear how one should select nodes based only on their

structural pro�le in Ĝ . As we will see, the success of such a strategy

can vary across datasets, how the data were observed, probing

budgets, and certainly by the application of interest. (2) Since a

probe can return an already known edge, the probing strategy must

determine when to stop probing a node.
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Figure 1: Example of an incomplete graph Ĝ a�er some
probes have been conducted. Black nodes have been probed
at least once, gray nodes have been observed but not yet
probed, and white nodes exist in the underlying ‘whole’
graph, but have not yet been observed.

3 PRELIMINARIES
3.1 Explore-Exploit Algorithms
Explore-exploit algorithms are common in se�ings where one must

choose from among a variety of options, each with a di�erent

payo�, without prior knowledge of which option is best. Multi-

armed bandit algorithms are a popular class of algorithms within

this broad category. �e simplest solution to the multi-armed bandit

problem is the ϵ-greedy algorithm [20]. In this method, one explores

with probability ϵ (i.e., selects an arm uniformly at random), and

exploits with probability 1− ϵ (i.e., selects the arm with the highest

average reward so far).

Another popular algorithm is the Upper Con�dence Bound (UCB)

algorithm [2]. �e UCB algorithm selects each arm once, and then

calculates an upper con�dence bound on the expected reward for

each arm, and the arm with the greatest value is chosen.

�ere are examples of multi-armed bandit strategies on graphs,

but these problem se�ings di�er substantially from ours. See Sec-

tion 7 for details.

3.2 Predicting Population Size with Random
Draws

Suppose that we have probed a node k times, and seen w distinct

neighbors and r duplicates (k = w + r ). What is the estimated

degree d of that node?

�e maximum likelihood estimate (MLE) of d , given k , w , and r ,

is approximately
ˆd = w+r

m (s ) , where s = w
k andm(s ) is the solution to

s = (1 − e−m )/m [16]. We assume that all edges are equally likely

to be observed by a probe. For general distributions, one can use

Valiants’ results [18].

4 PROPOSED METHOD: ϵ-WGX
We view the AEP problem as a version of the general explore-exploit

problem: one may probe any node in the incomplete network;

and depending on the selection, obtain information of varying

value (i.e., reward) for the given goal. For example, if we wish

to maximize the number of nodes in the enhanced network Ĝb ,

it would be most valuable to probe nodes in Ĝ that have a high

fraction of neighbors outside of Ĝ . But which nodes are these? One

could design heuristic approaches based on graph structure, but we

observe that high-reward probes may exhibit signi�cant structural

variance depending on the network and the goal for probing.

Alternatively, one could use an explore-exploit approach, which

has the following strengths: (1) �ey can be used without back-
ground knowledge of the network structure or reward function. (2)

�ey can adapt to the network and reward function. �us, if prob-

ing some node produces low reward, the approach is unlikely to

probe that node further. (3) �ey are stable and robust, regularly

providing the best performance for any given network and reward

function (while the outcomes of other strategies vary signi�cantly).

4.1 Overview
We propose ϵ-WGX (Weighted Graph eXplore), an explore-exploit

algorithm that takes advantage of the graph structure inherent in

the AEP problem. We make the following key observation: When
we probe a node and obtain an edge, we have gained information
not just about that node, but also about the observed neighbor. In a

typical explore-exploit problem se�ing, such as advertising, when

one selects an arm, one obtains reward data about only that arm.

Although some methods have been developed for cases in which

arms have linked rewards (e.g., if a user clicks on an advertisement

about cars, we might infer a higher reward for other advertisements

about cars), we are not aware of algorithms that operate directly

on graphs, in which the graph itself is the structure of interest.

ϵ-WGX requires that the user supply reward functions corre-

sponding to the desired probing goal: for example, if the goal is to

add as many new nodes as possible to Ĝ, then the reward function

could give a score of 1 for a probe that produces a new node, and

a score of 0 to other probes. See Section 4.2 for a discussion of

reward functions. As a node is probed, ϵ-WGX keeps track of the

rewards observed from those probed, as described in Section 4.3. In

Section 4.4, we describe how ϵ-WGX uses these observed rewards

to update not only the probed node, but also the observed neighbor.

A�er a node is probed repeatedly, ϵ-WGX must consider not just

past rewards obtained from that node, but the probability of obtain-

ing new information if it were to be probed again. �is process is

discussed in Section 4.5.

ϵ-WGX uses a nested exploration structure. In the outer level,

it chooses between the two broad options of graph expansion (i.e.,

observing a broader area of the underlying network) and graph

densi�cation (i.e., obtaining more information about the nodes

already observed). Once that choice is made, it must choose which

node to probe. See Figure 2 for a pictoral overview of ϵ-WGX.

ϵ-WGX has two important characteristics that di�erentiate it

from existing explore-exploit algorithms:

(1) ϵ-WGX uses a two-level nested structure that �rst chooses

between expansion vs. densi�cation, and then selects

which node to probe.

(2) With each probe, ϵ-WGX is able to update expected re-

wards for both the probed node as well as the observed

neighbor.

ϵ-WGX could be considered to be a multi-armed bandit algo-

rithm; however, we simply refer to it as an explore-exploit algo-

rithm. �is is because, unlike in most multi-armed bandit se�ings,

we cannot make any theoretical statements about the underlying

distribution of rewards.
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Figure 2: Flowchart depicting the ϵ-WGXnode selection pro-
cess. �e outer level chooses between expansion and densi-
�cation, and then a speci�c node is selected. Dashed lines
indicate that the choice that has been the best in the past is
chosen.

4.2 Global and Local Reward Functions
�e user must supply two reward functions to ϵ-WGX: global and

local. �e global reward function is tied to an application goal,

such as maximizing the number of nodes observed, and measures

the ‘quality’ of the observed network as a whole. �e local reward

function is related to the global reward function, and allows ϵ-

WGX to evaluate the value of an individual observed edge. In some

cases the local reward function may simply be the change in global

reward function. However, there are some reasons that this may

not necessarily be the case:

1: Graph Complementarities: �e local reward function f
must take into account complementarities due to graph structure, or

interactions between nodes. Consider the case when two observed

nodes have the same unobserved neighbor. If we simply de�ne

the reward of an edge as the change in the global reward function

д a�er adding that edge, then the mean rewards of probed nodes

would be highly dependent on the random order in which the nodes

were probed. For example, suppose observed nodesu andv are both

adjacent to node w , and ϵ-WGX probes u �rst and observes (u,w ),
and then probes v and observes (v,w ). If we simply measured the

change in total number of observed nodes, the �rst probe would

receive a reward of 1, and the second would receive a reward of

0. But these rewards are dependent entirely on the random order

of probes, which is undesirable. �us, the local reward function

should not just measure the change in the global reward function д.

2: Repeated Observations: If a neighbor is observed multiple

times, this should not a�ect the overall mean reward of that node.

Instead, as discussed in Section 4.5, as neighbors are observed

multiple times, the observed reward is discounted by the probability

of observing a new edge if that node is probed again to obtain the

expected reward.

We consider three global reward functions and corresponding

local reward functions, described below. In each description, let

(u,v ) be the edge just observed by a probe (i.e., node u was probed

and neighbor v observed).

�e Number of Nodes global reward function д calculates the

number of nodes in Ĝb . �e corresponding local reward function

f has a value of 1 if node v was added to Ĝ a�er node u was added

to the graph, and a value of 0 otherwise. For example, if both u and

v were in the original observed network before any probes were

made, then ϵ-WGX calculates a reward of 0. If v was added to the

graph a�er u, or the edge (u,v ) is observed from multiple probes

on u, then each of these probes has a reward of 1.

�e Number of Triangles global reward function д calculates

the number of triangles in Ĝb . �e corresponding local reward

function f has a value of 0 if v had not been observed prior to the

probe, or if edge (u,v ) was in the original observed network Ĝ.

Otherwise, it has a value of c , where c is the number of neighbors

that u and v share c in Ĝk , the current observed network (i.e., the

number of triangles in which the edge (u,v ) participates). Note that

using this reward function does not make the problem equivalent

to link prediction, as (1) we are only interested in links to nodes

that are two steps away, (2) we must consider the probability of

obtaining a new edge upon probing, and (3) we are permi�ed to

add new nodes to the network, as opposed to only adding edges

between observed nodes.

�e Number of Targeted Nodes global reward function is like

the Number of Nodes reward, except that only nodes with certain

a�ributes (e.g., nodes representing men over 40) produce a reward

of 1.

We refer to the value returned by the local reward function as

the reward of a probe.

4.3 Reward Vectors and Node Selection
Recall that ϵ-WGX makes two levels of choices: First, the outer

level chooses expansion vs. densi�cation, and if densi�cation is

chosen, the inner level makes a decision on which node to probe.

Outer Level: Expansion vs. Densi�cation: In each iteration,

with probability ϵ0, ϵ-WGX explores, and chooses between the

choices of expansion and densi�ciation with equal probability. With

probability 1 − ϵ0, it chooses the best of these two options as de-

scribed below.

To make this choice, ϵ-WGX maintains two values, rd and re .

rd measures the average reward observed when it chooses densi-

�cation. re is intended to measure the average reward observed

from expansion probes. �is includes probes conducted both when

ϵ-WGX chooses expansion, or when, during a densi�cation probe,

ϵ-WGX selects a node that was not in the original Ĝ and has not

yet been probed.

If expansion is chosen, then ϵ-WGX selects a node from the

currently observed network that was not in the original Ĝ uniformly

at random from the set of all such nodes (if no such nodes are

available, then ϵ-WGX defaults to densi�cation).

Inner Level: Node Selection: If the outer level chooses densi-

�cation, then with probability ϵ1, ϵ-WGX chooses to explore, and

chooses a node from the current observed network uniformly at

random. With probability 1 − ϵ1, ϵ-WGX chooses the node with
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Figure 3: �is example depicts rewards for the goal of adding
new nodes. Node u is probed four times. �e �rst probe re-
veals an edge to the known node v, the next two probes pro-
duce edges to the newnodew , and the fourth probe produces
an edge to the known node x . �e �rst and fourth edges pro-
duce rewards of 0, and the others produce a reward of 1. Rou
is thus 0.5. ϵ-WGX estimates u’s true degree as 6.6, and the
probability of observing a previously-unseen edge upon a
probe as 6.6−5

6.6 = 0.24. Rou is thus set to 0.5 × 0.24 = 0.12.

the greatest Reu , the mean reward expected for that node (described

below).

To track rewards, ϵ-WGX uses three vectors:

(1) Ro , a vector of mean observed rewards. Rou contains the

mean reward observed for each node u that has been ob-

served through probing (that is, eitheru was directly probed

or observed in a probe). Section 4.4 explains how Ro is cal-

culated.

(2) C , a vector of counts. Cu contains the pair (Au ,Bu ), where

Au is the number of distinct neighbors of u observed when

probing u, and Bu is the number of duplicate neighbors of

u observed when probing u. Section 4.5 explains how the

probability of observing a new edge when u is probed is

calculated from these values.

(3) Re , a vector of expected rewards. Reu contains the reward

that we expect to observe if u is probed. Reu is equal to

Rou × pu , where pu is calculated as described in Section 4.5.

All reward vectors are updated appropriately a�er each probe is

conducted. Figure 3 contains an example of this process.

4.4 Neighbor Updates
�e vector Ro contains the mean of a set of observed rewards

for each node. Rou captures both rewards observed when directly

probing node u, and certain rewards obtained when a neighbor v
of u is probed and edge (u,v ) is observed. Speci�cally, Rou is the

mean of the following values: (1) rewards observed when node u is

probed and (2) when a di�erent node v is probed and u is observed

as a neighbor of v , if u was already in the network at the time of

the probe of v , the reward that would have been obtained if u had

been probed and (u,v ) were observed.

Figure 4: In this example, there are 17 observed nodes (in
black and gray). �ree have been probed at least once. For
each of the black probed nodes, ϵ-WGX calculates the prob-
ability of seeing a new edge upon another probing. For the
gray unprobed nodes, the probability of seeing a new edge
is set to 1. ϵ-WGX expands (select a gray node) or densi�es
(select from the set of black and gray nodes). If densi�ca-
tion is chosen, it may explore, by selecting a random node,
or exploit, by selecting the best black node.

4.5 New Edge Probability
For each node u, ϵ-WGX calculates pu , the probability of seeing a

new edge when u is probed. If u has not been probed, or if u has

been probed but no duplicate neighbors have been observed, then

pu = 1. Otherwise, pu is calculated as follows: Suppose that for a

node u we have conducted Cu probes in total, and have observed

Au distinct neighbors and Bu duplicates. �en ϵ-WGX sets pu using

the MLE method described in Section 3.2.

As an example, consider Figure 4.

4.6 Parameter Settings
�e following parameters represent the tradeo� between explo-

ration and exploitation. In general, for the ϵ-Greedy algorithm

(which ϵ-WGX is based on), ϵ is set experimentally.

ϵ0 should be set to a low number, because it governs the choice

between only two options (expansion and densi�cation). However,

ϵ0 should not decay to 0 over time, because as the observed graph

expands to new regions, the optimal choice may change.

ϵ1 should be set to a higher number, as it governs the choice

between many di�erent nodes. To observe the rewards of such a

large number of nodes, frequent exploration is necessary. As before,

ϵ1 should not decay to 0 over time, because new nodes are being

added.

Our parameter se�ings are discussed in Section 5.

4.7 Performance with Respect to Optimal
Strategy

Note �rst that if the underlying network is �nite, then ϵ-WGX is

trivially a zero-regret strategy. It will eventually fully observe the

entire graph, achieving the maximum possible reward.

However, if the total number of probes conducted is small relative

to the size of the underlying graph, and if we assume that the reward
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function is binary- i.e., the reward for a probe can only be 0 or 1, then

ϵ-WGX’s regret is linear. Here, the regret is measured with respect

to the optimal probing strategy, which knows the true expected

reward obtained by probing any node. Intuitively, this means that

we expect to do some constant factor worse than optimal.

We argue that linear regret is necessary, because as argued above,

rapidly changing graph structure leads to rapidly changing rewards,

meaning that neither ϵ0 nor ϵ1, which control the frequency of

exploration, should decay to 0.

Theorem 4.1. If the probing budget is small relative to the size of
the underlying graph, then for binary reward functions, the expected
regret of ϵ-WGX is linear.

Proof: To show that ϵ-WGX has linear regret, we will show that

it has regret no worse than linear and no be�er than linear.

First note that a�er b probes, the optimal strategy achieves a

total reward of at most b, because the maximum reward obtained

by a single probe is 1.

Consider the worst possible probing strategy, which selects a

node whose edges have all already been observed and probes it re-

peatedly. �e per-probe reward achieved by this strategy is always

0, and so its regret with respect to the optimal strategy is clearly

linear. ϵ-WGX cannot do worse than this strategy.

Next, observe that ϵ-WGX cannot achieve regret that is be�er

than linear. ϵ-WGX chooses to explore at least e0 fraction of the time.

Let r̄ represent the mean reward obtained by probing a random

node, and r∗ be the expected reward obtained by following the

optimal strategy. �en the total regret of ϵ-WGX a�er T probes is

at least T (r∗ − r̄ ), which is a linear function of T .

�us, ϵ-WGX has linear regret.

5 EXPERIMENTAL SETUP
Our experiments aim to support the following claims:

(1) As motivation for a multi-armed bandit strategy, we show

that the best baseline strategy varies across tasks, networks,

and even probing budgets. Multi-armed bandit algorithms,

including ϵ-WGX, are valuable in cases when a user does

not know which types of nodes (e.g., high degree) should

be probed.

(2) Because ϵ-WGX takes advantage of the graph nature in the

AEP problem, it regularly outperforms both the structural

baseline strategies as well as other multi-armed bandit

strategies.

We assess the performance of our ϵ-WGX algorithm on ten

network datasets using incomplete networks generated/observed by

the four popular sampling methods, and compare against relevant

baseline probing strategies using three reward functions across a

variety of budgets. For each incomplete network, we perform 10

trials of each strategy and report averages and standard deviations.

For ϵ-WGX, we set ϵ0 = 0.05 and ϵ1 = 0.3.

5.1 Datasets
In our experiments, we probe samples of various types from larger

network datasets. However, because obtaining complete network

data is very challenging, our larger network datasets (from which

we sample) may themselves be samples. To address this issue, we

made a speci�c a�empt to identify complete network datasets (KDD,

ICDM, and SIGMOD, described below). To increase the number of

datasets, we also consider incomplete networks.

We use ten network datasets. FB-Grad and FB-UGrad represent

portions of the Facebook network corresponding to, respectively,

graduate and undergraduate students at a university. FB-Grad

contains 523 nodes and 3,256 edges, and FB-UGrad contains 1,220

nodes and 43,208 edges [13]. FB-SocCir represents a portion of

the Facebook network collected by the Social Circles application.

It contains 4,039 nodes and 88,234 edges.
2 Amazon represents

book co-purchases from Amazon.com. It contains 270,347 nodes

and 741,124 edges.
2 Pokec represents the Pokec social network,

and contains 1.6 million nodes and 30 million edges. Nodes are

annotated with information such as gender, percentage of pro�le

completed, etc.
2 Retweet represents retweets from the Twi�er net-

work, and contains 39,546 nodes and 45,796 edges.
2 Enron contains

e-mail networks from the Enron corporation, and contains 84,429

nodes and 325,564 edges.
3 KDD, ICDM, and SIGMOD represent

coauthorship relationships from the named conferences from 2005-

2009. �ey contain 1366, 1654, and 1365 nodes and 2769, 2808, and

3541 edges, respectively. �ese networks are complete within the

speci�ed dates and conferences.
4

5.2 Incomplete Graphs Obtained by Graph
Sampling

We evaluate ϵ-WGX and the baseline algorithms on incomplete

networks generated by the following four sampling methods: (1)

Breadth-�rst search (BFS) sampling, which is a popular way of

exploring portions of the Web [4]. (2) Random Edge sampling,

which selects a speci�ed number of edges uniformly at random. For

example, the Twi�er �rehose provides a 10% uniform sample over

the set of tweets. If retweets constitute edges, then this data pro-

duces a sample similar to the Random Edge method. (3) Random
Walk sampling, which is also a common method for sampling large

graphs (see [9]). (4) RandomWalk with Jump sampling, which

is similar to the Random Walk sampling method, except that at

each step, there is a speci�ed chance of transitioning to a random

node in the graph. In this paper, we used 0.15 as the probability of

jumping to a random node.

5.3 Competing Probing Strategies
5.3.1 Structural Baseline Probing Strategies. We considered a

variety of simple baseline probing strategies based on structural

information, and consistently saw that two baselines performed

well: probing high degree nodes and probing low degree nodes. In

the High Degree and Low Degree strategies, we assign each node

a value proportional (for High Degree) or inversely proportional

(for Low Degree) to its degree. Additionally, we calculate the

probability of seeing a new edge when a node is probed multiple

times using the same MLE process as ϵ-WGX uses, and multiply

the degree-based values by this probability. In each step, the node

with the highest value is selected.

2
Obtained from h�p://snap.stanford.edu.

3
Obtained from h�ps://www.cs.cmu.edu/∼./enron/.

4
Obtained from h�p://dblp.uni-trier.de/.

http://snap.stanford.edu
https://www.cs.cmu.edu/~./enron/
http://dblp.uni-trier.de/
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(a) Probing an Enron BFS sample, with the
goal of adding triangles.

(b) Probing an Amazon RWJ sample, with
the goal of adding nodes.

(c) Probing a Pokec RW sample, with the
goal of adding nodes representing incom-
plete male pro�les.

Figure 5: Examples of probing results. Shading indicates one standard deviation (not visible when standard deviation is low).
Only the better of the two multi-armed bandit algortihms is shown. In all cases shown, ϵ-WGX is the best.

Figure 6: Fraction by which ϵ-WGX outperformed the best degree-based baseline strategy. �e top row compares ϵ-WGX to
baseline probing strategies with the goal of adding triangles to the observed network, and the bottom row is for the goal of
adding new nodes to the observed networks. Results are aggregated over all considered networks. Values are calculated as
described in Algorithm 1. �e text boxes indicate the means of the distributions. Values in blue are above 0, indicating the
fraction by which ϵ-WGX outperformed the baselinemethod, while values in red are below 0, indicating the fraction by which
the baseline method outperformed ϵ-WGX. ϵ-WGX outperforms the best baseline strategy in almost all cases.

In Figure 4, the High Degree strategy selects Node A, which

has an observed degree of 3 and a probability of seeing a new

edge upon probing of 0.55, and thus a total score of 1.65. �e Low
Degree strategy selects one of the gray nodes, each of which has an

observed degree of 1 and a probability of seeing a new edge upon

probing of 1.0.

We also de�ne a random strategy (Random), which randomly

selects a node in each step. Random removes from consideration

those nodes for which it has observed duplicate edges in more than

half of their probes.

5.3.2 Other Explore-Exploit Algorithms. We compare ϵ-WGX

to the ϵ-greedy and UCB multi-armed bandit algorithms. As with

ϵ-WGX, we multiply the values that these methods assign to each

node u by pu (as described in Section 4.5), to ensure that the nodes

are not probed even a�er their edges are all observed.

5.4 Probing Budgets
For each incomplete network Ĝ, we calculate bmax , the number

of edges adjacent to at least one node in Ĝ which are not already

present in Ĝ). Because one may obtain duplicate edges with multiple

probes, it is theoretically possible to probe forever. �us, we set an

upper limit budget at bRmax = 3 × bmax , and consider budgets at

the 100 quantiles of the interval (0, bRmax ). Recall that each unit of

budget corresponds to probing one node and observing one edge.



WebSci’17, June 2017, Troy, NY USA Sucheta Soundarajan, Tina Eliassi-Rad, Brian Gallagher, and Ali Pinar

Figure 7: Results of baseline probing strategies on a random
edge sample of the FB-SocCir network. Initially, Random is
the best, but is soon overtaken by High Degree probing.

6 RESULTS
We present results in 3 sections: First, we observe that performance

of the three baseline strategies (High Degree, Low Degree, and

Random) is highly variable, and so picking a single strategy is dif-

�cult (Section 6.1). Second, we compare ϵ-WGX to the baseline

strategies, as well as to the ϵ-Greedy and UCB multi-armed bandit

strategies (Section 6.2). �ird, we consider the Number of Tar-

geted Nodes global reward function on the Pokec network, and

again show that ϵ-WGX outperforms the comparison strategies

(Section 6.3).

6.1 Analysis of Baseline Strategies
When evaluating the three baseline strategies described in Sec-

tion 5.3.1, we observe that the best baseline can vary in surprising

ways. For example, we consider incomplete networks generated by

random walk and random edge sampling on the ICDM network,

for the Number of Nodes reward function. For the random edge

sample, probing low degree or random nodes is much be�er than

probing high degree nodes. In contrast, on the network generated

by a random walk with jump, High Degree probing is best.

As shown in Figure 7, on an incomplete network generated by

random edge sampling on the Facebook-SocCir network, the best

probing strategy varies: on low budgets, Random probing is best, but

High Degree probing is be�er for higher budgets. �is example

illustrates the di�culty in selecting a structural baseline strategy,

because the best strategy depends on how the incomplete network

was generated (which may not always be known), probing budgets

and application. �ese results motivate the use of explore-exploit

strategies, which adapt to the network and reward function.

6.2 Analysis of ϵ-WGX
We show that ϵ-WGX outperforms both the best simple structural

baseline strategy and the best multi-armed bandit strategy.

Figure 5a shows results on a BFS sample of the Enron email net-

work, with the Number of Triangles reward function, and Figure 5b

illustrates various probing strategies on a random walk sample of

the Amazon network, with the Number of Nodes reward function.

�e x-axis represents the number of probes conducted; and the

y-axis represents the number of triangles or nodes, respectively,

in the enhanced network
ˆG ′. Note that in both cases, ϵ-WGX is

clearly the best across all considered probing budgets.

Algorithm 1 Aggregate comparisons of ϵ-WGX to baseline strate-

gies for the # of Nodes reward function (can be trivially modi�ed

for other reward functions).

Given sampling method M , baseline strategy C
Dist ← []

for Networks G , budgets b do
Ĝ ← sample of G produced by method M
N ← number of nodes in Ĝ
for Trials 1-10 do

ĜWGX ← Ĝ a�er b probes by ϵ -WGX

Ĝcomp ← Ĝ a�er b probes by strategy C
NWGX ← number of nodes in ĜWGX
Ncomp ← number of nodes in Ĝcomp

if NWGX > Ncomp : v ← NWGX
Ncomp

− 1

else: v ← 1 −
Ncomp
NWGX

Dist .append(v )
Plot and calculate mean of Dist
We aggregate results as described in Algorithm 1. We calculate

the distribution of the fraction improvement of ϵ-WGX over each

comparison strategy over networks, budgets, and trials. Fractions

above 0 indicate that ϵ-WGX is performing be�er than the com-

parison strategies. For symmetry, we use a di�erent calculation

depending on which strategy did be�er. For instance, if ϵ-WGX

adds 120 nodes and the comparison strategy adds 100 nodes, this

score will be reported as 0.2, and if the values were reversed, it

would be reported as −0.2.

For brevity, we only plot ϵ-WGX in comparison to the best struc-

tural baseline strategy (chosen from high degree and low degree

probing depending on which does be�er for a given network, sam-

ple type, and reward) in Figure 6. �e values in boxes indicate the

means of the distributions (values above 0 indicate that ϵ-WGX

outperformed the comparison strategy).

On average, in every case, ϵ-WGX outperforms all comparison

methods. Table 1 contains the means of these distributions for

ϵ-WGX vs. ϵ-Greedy, UCB, and random probing. Again, all means

are above 0.
5

6.3 Identifying Certain Types of Nodes
We now consider the Number of Targeted Nodes global reward

function on the Pokec network. Here, we wish to �nd nodes that

represent male users who have �lled out less than half of their

pro�le.
6

Interestingly, there is li�le homophily expressed with

respect to this characteristic. We conduct 50,000 probes on the

Pokec samples, and show results on a random walk sample in

Figure 5c. Similar results were observed for other sampling methods.

ϵ-WGX is the clear winner.

6.4 Running Time
�e running times of the various multi-armed bandit and baseline

strategies are similar. For example, on a BFS sample of the FB-SocCir

network, High Degree probing takes 4.3e-4 seconds per probe, and

ϵ-WGX requires approximately 6.5e-5 seconds per probe.

5
For additional results, please refer to the version of this paper posted at www.

soundarajan.org/EpsilonWGX.pdf, which contains an Appendix with more detailed

results.

6
We saw similar results for other targets.

www.soundarajan.org/EpsilonWGX.pdf
www.soundarajan.org/EpsilonWGX.pdf
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Goal: Increase # of Nodes Goal: Increase # of Triangles

BFS RandEdge RandWalk RandWalk/Jump BFS RandEdge RandWalk RandWalk/Jump

ϵ-Greedy 0.22 0.14 0.54 0.17 0.46 0.68 0.60 0.63

UCB 0.19 0.16 0.23 0.15 2.29 3.47 3.05 3.75

Random 0.63 0.28 0.56 0.32 1.65 1.80 1.42 2.20

Table 1: Fraction by which ϵ-WGX outperformed the comparison strategy, averaged over networks, probing budgets, and trials
as described in Pseudocode 1. On average, ϵ-WGX always outperforms the comparison strategy. For example, for the goal of
increasing the number of nodes observed, on initial samples produced by a BFS crawl, ϵ-WGX outperforms ϵ-Greedy by 22%.

7 RELATEDWORK
Our work is related to the literature on graph sampling, network

analysis, and multi-armed bandits.

Graph Crawling and Sampling: Leskovec and Faloutsos pro-

vide an excellent overview of several popular sampling methods [9].

Maiya and Berger-Wolf [12] and Wu et al. [21], sample graphs for

community detection. Maiya and Berger-Wolf [11] estimate central-

ity measures; and Cho et al. [5] propose a method for determining

which URLs to examine in a web-crawl. Unlike these works, we

assume that we improve a given incomplete network, as opposed

to having control or knowledge of sample creation.

NetworkAnalysiswith Limited Information: Another ques-

tion is how to infer characteristics of a graph from a sample. Han-

neke and Xing [7] a�empt to predict topology given access to only

a few nodes. Kim and Leskovec [8] a�empt to infer missing pieces

of a network. Avrachenkov et al. [3] propose a method for locating

high-degree nodes in a network using a limited number of queries,

and Cohen et al. [6] show how one can e�ciently immunize a net-

worked population in which the network structure is unobserved.

Macskassy and Provost [10] show how one can identify malicious

actors in a network by gathering limited information. Soundarajan,

et al. consider the problem of adding as many nodes as possible to

an incomplete network [17]. Unlike these works, ϵ-WGX considers

arbitrary rewards.

Multi-Armed Bandits: �e multi-armed bandit problem was

introduced by Robbins [15]. �e simple ϵ-Greedy approach [20]

works well in practice [19]. In graph se�ings, Reverdy, et al. [14]

and Alon, et al. [1] consider a model in which neighbors have similar

rewards. In contrast, ϵ-WGX does not assume that the reward for

node u is linked to that of its neighbors.

8 CONCLUSIONS
We presented the Adaptive Edge Probing (AEP) problem, in which

one selects nodes in an incomplete graph for further exploration,

without knowledge of or control over how that incomplete network

was observed. We presented the ϵ-WGX algorithm: an explore-

exploit method, which identi�es nodes that, when probed, produce

useful information for a speci�ed goal (e.g., making the incomplete

graph more whole by increasing the number of observed nodes).

Our results illustrated three main points. (1) Explore-exploit strate-

gies are a useful tool for selecting nodes for probing within the

context of the AEP problem, as it is di�cult to select a simple

baseline strategy that will be successful across reward functions,

datasets, and sampling/observation methods. (2) ϵ-WGX consis-

tently performs well across various se�ings. (3) By using neighbor

information, ϵ-WGX outperforms both of the competing multi-

armed bandit algorithms, as well as the structural baselines.
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