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Use of Local Group Information to Identify Communities in Networks

SUCHETA SOUNDARAJAN and JOHN E. HOPCROFT, Cornell University

The recent interest in networks has inspired a broad range of work on algorithms and techniques to charac-
terize, identify, and extract communities from networks. Such efforts are complicated by a lack of consensus
on what a “community” truly is, and these disagreements have led to a wide variety of mathematical for-
mulations for describing communities. Often, these mathematical formulations, such as modularity and
conductance, have been founded in the general principle that communities, like a G(n, p) graph, are “round,”
with connections throughout the entire community, and so algorithms were developed to optimize such math-
ematical measures. More recently, a variety of algorithms have been developed that, rather than expecting
connectivity through the entire community, seek out very small groups of well-connected nodes and then
connect these groups into larger communities. In this article, we examine seven real networks, each con-
taining external annotation that allows us to identify “annotated communities.” A study of these annotated
communities gives insight into why the second category of community detection algorithms may be more
successful than the first category. We then present a flexible algorithm template that is based on the idea
of joining together small sets of nodes. In this template, we first identify very small, tightly connected “sub-
communities” of nodes, each corresponding to a single node’s “perception” of the network around it. We then
create a new network in which each node represents such a subcommunity, and then identify communities
in this new network. Because each node can appear in multiple subcommunities, this method allows us to
detect overlapping communities. When evaluated on real data, we show that our template outperforms many
other state-of-the-art algorithms.
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1. INTRODUCTION

As networks become increasingly prevalent in our world, researchers seek new meth-
ods to analyze them. One important area of network research deals with identifying
communities in networks [Fortunato 2010; Girvan and Newman 2002]. This area has
roots in the classic problem of graph clustering, but has evolved to match our intuitions
about what “real” communities should look like.

Traditionally, researchers have approached this problem by first creating mathe-
matical definitions of what real communities ought to look like, and then designing
algorithms to identify sets that match these descriptions. While this approach has
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advantages, it is not always clear whether a particular mathematical definition of
“community” is correct.

Many such mathematical definitions are based on the principle that a community
ought to be “round,” or well connected throughout: for example, a good community
might resemble a G(n, p) graph within a larger network (with p large relative to the
edge density of the rest of the network). Classic examples of such definitions include
modularity and conductance, both of which reward a set of nodes for having high
connectivity throughout the entire set.

Another type of mathematical definition is founded in the belief that communities are
“long,” or formed of many small groups that are individually well connected, and while
these small groups may be well connected to one another, each individual node in a
group may not be well connected to the rest of the community. For example, the popular
Clique Percolation algorithm [Palla et al. 2005] first identifies cliques of a certain size,
and then “rolls” together adjacent cliques (those sharing all but one node) to find larger
communities. While portions of such a community are certainly well connected (as they
are cliques), an individual node need not have any connection to more distant cliques.

Because there is little consensus about what real communities are, rather than cre-
ating and evaluating our method based on some mathematical criterion, we choose to
design it and test it using real data. We use a collection of seven network datasets
from varied domains, including social, product, and biological. Each of these networks
contains some sort of external annotation that allows us to identify ‘annotated commu-
nities.” For example, in a social network of students at a university, all students in the
same department constitute one annotated community.

First, in order to gain insight into which of the two concepts of “community” is
more realistic, we examine the annotated communities in detail. We demonstrate that
annotated communities tend to be much “longer” than random graphs of the same size,
and so conclude that the “long” model of communities as sets of small groups may better
characterize annotated communities. We then decompose each annotated community
into several constituent parts, and show that these parts tend to fit the “round” model
much better than do the complete annotated communities.

Working with these principles, we create the Node Perception algorithm template
for finding overlapping communities in networks. Our method is founded partly in the
intuition that while individuals may belong to many different communities, a rela-
tionship between two individuals will generally fall solidly into one community. Given
this, individuals in a network should be able to partition their neighbors into disjoint
“subcommunities” that are portions of larger communities. For example, an individual
person may be in many communities, such as her workplace, a university department
at her school, an extended family, and so on. While she cannot name every individual in
these communities, she can probably identify which of her acquaintances fall into each
of these communities, and so can group her neighbors into subcommunities (e.g., “my
coworkers,” “my classmates,” etc.). These subcommunities can be identified through
use of a simple graph partitioning algorithm, or, in some cases, may be more accurately
identified with available metadata (e.g., if several people frequently appear together
in photographs). We then identify communities in a new network in which each node
represents a subcommunity. Each node from the original network can be represented
by multiple subcommunities, so a node can appear in many different communities.
Because a practitioner may choose how to identify subcommunities, how to create a
network of subcommunities, and how to identify communities in that new network, this
template is highly flexible and can easily be tuned to meet the user’s needs. To evaluate
our method, we test how well it recovers the set of annotated communities. Because it
is a flexible template, we consider several specific instances, and show that all of these
instances outperform several other popular methods for identifying communities.

ACM Transactions on Knowledge Discovery from Data, Vol. 9, No. 3, Article 21, Publication date: April 2015.



Use of Local Group Information to Identify Communities in Networks 21:3

We finish with a brief discussion of how a practitioner might select a specific Node
Perception implementation to suit his or her needs and network features. We give
several case studies, in which we consider features of actual networks, and show how
modifications based on these features can further increase the performance of Node
Perception.

Our work is novel in several important ways. Publications in the community detec-
tion arena typically present an algorithm and show that it is effective on some datasets,
but often do not examine why a method is successful. Alternatively, they may present
an algorithm and then give theoretical guarantees, with little justification for why a
particular theoretical measure is best. Although many other popular algorithms are
based on the general principle of joining together small, well-connected groups of nodes
(including the DEMON algorithm [Coscia et al. 2012], which is a specific instance of
our method), to our knowledge our work is the first to propose an explanation based
on real data for why such methods of community detection are successful. Addition-
ally, we demonstrate that the general template is far more important than the specific
implementation. Indeed, in most cases, each of the six implementations that we con-
sider outperforms the other algorithms. To both practitioners and researchers, this
conclusion is of far more value than demonstrating that one single algorithm outper-
forms other methods. To practitioners, these results are particularly useful because our
method gives a user a great deal of flexibility, even allowing for the easy incorporation
of information external to the structure of the network, such as in the case when some
community memberships are known. Just as importantly, these results are valuable
to researchers, because they give insight into the structure of annotated communities
by demonstrating that the template itself, rather than specific implementations, is
responsible for Node Perception’s success.

This article is organized as follows: first, we discuss work related to ours, includ-
ing descriptions of other algorithms that we use for comparison. Next, we discuss
our method in detail. After that, we discuss each of the datasets used for evaluation.
We then compare the output from each algorithm to the annotated communities from
the datasets. We find that averaged over seven datasets, our Node Perception meth-
ods outperform the other tested methods. We then discuss scalability and suitability
of different Node Perception implementations, and consider several case studies, in
which we use features of individual networks to select an appropriate Node Perception
implementation. Finally, we discuss some directions for future work.

2. RELATED WORK

Many traditional community detection algorithms are based on the principle that a
good community is a set of nodes that is well connected internally and mostly separated
from the rest of the network. This has led to the formulation of measures such as
modularity [Newman 2006], which measures the number of edges within a community
as compared to the expected number if the edges had been distributed randomly, and
conductance [Kannan et al. 2004], which measures the ratio of the number of edges
outgoing from a set to the total number of edges incident to vertices in the set. Such
concepts have led to a diverse set of algorithms, which typically produce a partitioning
of the network.

Algorithms for finding overlapping communities are also quite diverse. As with parti-
tioning algorithms, some are intended to optimize some mathematical definition. Oth-
ers, like Link Communities and Clique Percolation, are founded on the concept that
communities are based on very small, local groups. Some researchers, such as Friggeri
et al. in Friggeri et al. [2011], identify local sets that are similar to our “subcommu-
nities,” and then expand these “egomunities” into larger communities so that a par-
ticular mathematical feature of the communities is maximized. Leskovec’s Kronecker
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graph generative model is a recursive model of graph generation in which the struc-
tures of small portions of the graph resemble the way that those portions are connected
to one another [Leskovec et al. 2005].

Unlike many of these algorithms (such as the egomunities method), our method is
not based on a rigid mathematical optimization, and can easily be modified for various
network features or to incorporate metadata. Clique Percolation and, in particular,
Link Communities might also be considered templates, in the sense that they are
easily modified. However, while these methods are superficially similar to our method
in the sense that they join local groups of nodes together, they have an inflexible notion
of local groups: Link Communities takes each edge to be its own local group, and
Clique Percolation identifies cliques. In contrast, our method provides a flexible way
for identifying such “subcommunities.”

Most similar to our work is the DEMON algorithm [Coscia et al. 2012], which can be
viewed as a specific instance of our template.

In this article, we compare our method to several other algorithms, which we discuss
in further detail in the following. We first discuss the Louvain method for greedy
modularity optimization and Infomap, two methods for partitioning the network. The
Link Communities, DEMON, and Clique Percolation algorithms are the most similar
to our algorithm in principle, and so we also consider them, as well as OSLOM, another
algorithm for identifying overlapping communities.

2.1. Methods for Partitioning a Network

2.1.1. Modularity (Mod). A classic method for calculating the quality of a partition is
modularity, which is based on the principle that a good community is strongly connected
internally and is isolated from the rest of the network. The modularity of a partition
is defined as follows: Define m to be the number of edges in the network, Ai, j as the
number of edges between nodes i and j (in our networks, this value is either 0 or 1), ki
as the degree of node i, and δ(i, j) as 0 if i and j are in different parts of the partition
and 1 if they are in the same part [Newman 2006]. Then the modularity Q of a partition
is

Q = 1
2m

∑
i, j

[
Aij − kikj

2m

]
δ(i, j). (1)

This represents the number of edges within a set as compared to the number of edges
expected in that set had the edges been distributed at random: a set with many in-links
and few out-links will thus contribute heavily to the total modularity of the partition.

In this article, we use the recursive Louvain method for greedy modularity optimiza-
tion [Blondel et al. 2008].

2.1.2. Infomap (IM). We also consider the Infomap partitioning algorithm of Rosvall and
Bergstrom, which views a network as an analog to a geographical map [Rosvall and
Bergstrom 2008]. Rosvall and Bergstrom consider the problem of describing random
walks along the network using a two-level encoding scheme in which each node is
described both by its cluster name as well as its own (relatively short) local name
within that cluster. Nodes in different clusters may share short local names (e.g., many
cities have a “Main St.”). The goal of the Infomap partitioning algorithm is to identify
clusters so as to minimize the expected length of a random walk’s description that uses
nodes’ names. Intuitively, this is accomplished by grouping together nodes that often
appear close together in random walks into appropriately sized clusters.

To identify a clustering, the Infomap algorithm uses a greedy algorithm. Initially,
each node is placed in its own community, and communities are merged together in
such a way as to greedily minimize the expected length of a random walk’s description.
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Simulated annealing is then used to improve this result. Lancichinetti and Fortunato
evaluated several algorithms and networks and concluded that Infomap was the most
reliable of the methods evaluated [Lancichinetti and Fortunato 2009].

2.2. Methods for Finding Overlapping Communities

2.2.1. Clique Percolation (CP). One common method for locating overlapping communi-
ties is the Clique Percolation method [Palla et al. 2005]. For a specified k, this method
first locates all k-cliques in the network and then “rolls” together adjacent cliques. Two
cliques are considered adjacent if they share k − 1 nodes. A community is then formed
by beginning with one k-clique, adding all adjacent k-cliques, then adding all k-cliques
adjacent to those added in the last step, and so on, until no further growth is possible.
Because each node may appear in multiple cliques, this method can produce overlap-
ping communities. To identify Clique Percolation communities, we use the software
presented in Adamcsek et al. [2006].

2.2.2. Link Communities (LC). Another successful method for finding overlapping com-
munities is the Link Communities method [Ahn et al. 2010]. This method is based on
hierarchical clustering; however, instead of clustering nodes, it clusters edges. For a
network G, this method creates a new network H in which every node in H represents
an edge from G. Two nodes in H are linked by an edge if their associated edges are
adjacent in G. An edge between two nodes in H is weighted according to the similar-
ity between the associated edges in G, defined as the Jaccard similarity between the
neighborhoods of their unshared nodes.

The algorithm then uses single-linkage hierarchical clustering to identify “link com-
munities” in H, stopping when a maximum network partition density is achieved,
defined as the average partition density DC for all communities C. The partition den-
sity DC for a community C containing m links and n nodes is defined as follows:

DC = m− (n − 1)
n(n − 1)(n − 2)

. (2)

2.2.3. OSLOM. (“Order Statistics Local Optimization Method” (OSLOM) is a cluster-
ing method intended to detect overlapping, hierarchical community structure and dis-
tinguish meaningful community structure from artificial communities that occur even
in random networks [Lancichinetti et al. 2011].

The OSLOM procedure consists of three main parts: First, finding significant clus-
ters; second, analyzing the resulting clusters to determine whether any should be
merged or split; and third, identifying community hierarchies by repeating the analy-
sis on a new network representing the clusters already detected.

To identify one cluster, the algorithm initially begins with a randomly selected node
as its own cluster, and then adds significant neighbors of that cluster through a stochas-
tic process that locates those nodes that have more edges into the cluster than would
be expected in a random network. A clean-up procedure is then applied to the cluster,
in which significant nodes are added to and insignificant nodes are removed from the
cluster. Once clusters have been identified, the algorithm then considers merging or
splitting the clusters. Next, the algorithm forms a new network in which the nodes rep-
resent clusters found in the earlier steps. The process is then repeated on this network,
and so on, to produce a hierarchy of communities. For full details, see Lancichinetti
et al. [2011].

2.2.4. DEMON. Democratic Estimate of the Modular Organization of a Network
(DEMON) is a method for identifying overlapping communities [Coscia et al. 2012].
It is a specific instance of the general template that we present in this article, and was
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created independently of, and simultaneously with, this work. We discuss it in greater
detail in Section 6.

3. DATASETS

Throughout this article, we analyze seven networks of various types, each with in-
dividual nodes tagged with metadata. With this metadata, we identify “annotated
communities” by grouping together nodes with the same tags. We consider only those
annotated communities that contain connected components of size at least 10. If some
annotated community contains multiple components that are of size 10 or larger, we
consider each to be a separate community. In this section, we describe each dataset and
some of its properties.

“Amazon” is a product copurchasing network from Amazon.com [Leskovec et al.
2006]. Each node represents a book, and an edge exists between two nodes if one was
frequently purchased with the other. The network contains 270,347 nodes and 741,142
edges. For each item in this network, Amazon.com provides several product categories,
such as “Chemistry Textbooks” or “Spy Thrillers.” We use these annotations to create
a set of 9474 communities.

“HS,” “DM,” and “SC” are, respectively, biological networks describing protein-protein
interactions for Homo Sapiens (human), Drosophila (a fruit fly species), and Saccha-
romyces cerevisiae(a type of yeast) [Park et al. 2011; Singh et al. 2008]. In these net-
works, a node represents a protein, and two nodes are connected if their associated
proteins are known to interact with one another. HS contains 10,298 nodes and 54,655
edges, DM contains 15,326 nodes and 486,970 edges, and SC contains 5523 nodes and
82,656 edges. Some proteins (though not all) are annotated with one or more gene
ontology IDs describing the known function or functions that the protein serves. We
use these gene ontology values to identify communities. HS contains 70 communities,
DM contains 56, and SC contains 77.

“Grad” and “Ugrad” are, respectively, sections of the Facebook network that cor-
respond to graduate and undergraduate students at Rice University [Mislove et al.
2010]. Grad contains 503 nodes and 3256 edges, and Ugrad contains 1220 nodes and
43,208 edges. For each graduate student, we are given their department membership,
college membership, and year. For each undergraduate student, we are given major,
dormitory of residence, and year. We use this information to identify 24 communities
in Grad and 41 communities in Ugrad.

“Manu” is a small network describing interactions of employees at a manufacturing
plant [Cross et al. 2004]. Two workers are linked if one of them reported that he or
she spoke to the other at least “somewhat infrequently.” Manu contains 77 nodes and
705 edges. Using employment metadata for each worker, describing office location
(city), length of time employed, and “organizational level” (e.g., “Local Department
Manager”), we identify 10 communities.

See Yang and Leskovec [2012] for a discussion of similar annotated communities. This
work demonstrates, among other results, that when such communities are perturbed
through various methods (e.g., swapping nodes in and out of the community), the
perturbed community tends to be a weaker community, as measured through different
community evaluation methods (such as conductance). Also see Abrahao et al. [2012]
for a machine-learning-based analysis of annotated communities, showing that the
class of annotated communities has some amount of structural cohesion.

4. COMMUNITY STRUCTURE

As we saw in the Related Work section, many classic conceptions of community struc-
ture are based on the belief that communities should be well connected internally. Two
such examples, both of which are popular and frequently used, are modularity and
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conductance. Observe that both of these metrics expect links throughout the commu-
nity, that is, these metrics are useful for finding “round” communities that are well
connected through the entire community, much like a G(n, p) graph [Erdős and Rényi
1959].1 The Infomap and OSLOM communities also fall into this general category.

In contrast, other algorithms, such as Clique Percolation, find “long” communities,
in which there is no expectation that a node at one “end” of a community ought to be
connected to a node at another “end.” For instance, consider a community found by
Clique Percolation that was identified by connecting adjacent k-cliques C1, C2, . . . , Cr,
where two cliques are adjacent if they share k − 1 nodes. If there is an edge between
some node in C1 and some node in Cr, the Clique Percolation algorithm does not view
this community as any stronger than if there is no such edge. Note that this model is
not entirely the same as a model of community hierarchy, although both models claim
that communities consist of small groups. Consider, for example, a community found by
Clique Percolation, which is clearly made of small groups, but may have no hierarchical
structure.

At the extremes, this difference between “round” communities and “long” commu-
nities is illustrated by the contrast between a “round” clique, in which there must be
connections throughout the entire set, and a “long” connected component, in which the
connectedness may be very localized.

4.1. Community Roundness

To study community roundness, it is tempting to use existing, well-understood commu-
nity measures that are based on the principle that communities ought to be “round,”
such as conductance or modularity. However, these metrics often incorporate other be-
liefs about community structure; for instance, both conductance and modularity score
more highly in those communities that are well separated from the rest of the network.
Moreover, conductance and modularity statistics can be difficult to interpret without a
baseline for comparison. To address these issues, in this section we present the “round-
ness” statistic. This statistic is intended to measure only the roundness of a community
without complication from other factors, and explicitly incorporates a baseline so that
values can be understood in isolation.

Rather than define “round” and “long” in absolute terms, we view them as opposite
ends of a spectrum. We define the “roundness” of a community as the ratio of its diam-
eter to the expected diameter of a connected random Erdös-Rényi G(n, M) graph with
the same number of nodes and edges. A very “round” community has a low diameter
relative to the random graph; a “long” community has a high diameter relative to the
random graph. In this definition, an Erdös-Rényi G(n, M) graph epitomizes the concept
of a graph that is well connected throughout. Note, however, that some graphs may be
“rounder” than a G(n, M) graph of the same size; for example, a star graph with a large
number of nodes has diameter 2, while a G(n, M) graph of the same size will likely
have a much larger diameter. The “roundness” statistic of a community may thus take
on any positive value, where small values indicate a “round” community. Observe that
a community with a clear hierarchy may have a high “roundness” score (that is, it may
be classified as “long”), because it contains regions with higher density than the com-
munity as a whole. Although such a community is clearly structurally different from
an archetypal “long” community such as a path graph, we nevertheless consider it to
be “long.” We are primarily interested in learning whether real communities are well
described by metrics that expect connections throughout the set, and so understanding

1We do not claim that every community found by a modularity- or conductance-optimizing algorithm will
have this sort of structure, but rather that the metrics are based on the principle that communities ought to
look like this.
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Table I. Roundness Statistics: Ratios of Diameters of Annotated Communities, Parts of Annotated Communities,
and Network of Parts of Annotated Communities to Diameters of Random Graphs of the Same Size

Grad Ugrad HS SC DM Amazon Manu
Ann. Comm. Roundness All sizes 1.34 1.29 1.11 1.17 1.21 1.16 1.23
Ann. Comm. Roundness # nodes ≥ 50 1.56 1.47 1.17 1.29 1.50 1.72 1.33
Ann. Comm. Roundness # nodes ≥ 75 1.58 1.54 1.13 1.32 1.50 1.84 –
Ann. Comm. Roundness # nodes ≥ 100 1.70 1.67 1.15 1.30 1.75 1.91 –
Comm. Parts Roundness 1.07 1.16 1.04 1.06 1.01 1.03 1.02
Comm. Parts Network Roundness 1.02 1.00 1.00 0.99 0.91 1.00 1.00

why a community is not “round” is less important than knowing whether it is or is not
“round.”

In this section, to estimate a community’s roundness value, we perform the following
procedure: For a given set with n nodes and M edges, we produce a random connected
Erdös-Rényi G(n, M) graph with the same number of nodes and edges. In each case,
we make up to 10,000 attempts to generate a connected random graph of the same
size. If we are unable to generate a connected graph, we discard that community from
consideration. This typically occurs when a graph has many nodes and relatively few
edges. We then measure the ratio of the community’s diameter to the diameter of the
random graph.

4.2. Roundness Analysis

In order to determine whether the annotated communities from the networks listed in
the previous section are “round” or “long,” we calculate their roundness statistics. For
each annotated community, we first identify a “core” of that community by iteratively
eliminating all nodes with only one edge into the community. We perform this trimming
process in order to ensure that our diameter calculations are not skewed by communi-
ties that are very weakly connected and have large diameters (e.g., communities with
long path-graph-like structures on the fringe). We then calculate the roundness of the
trimmed community.2 Note that this trimming procedure can only decrease a commu-
nity’s diameter, and thus its roundness statistic (that is, the original community can
never be rounder than the trimmed community). If annotated communities are indeed
“round,” then we expect that, on average, their diameters will be roughly similar to
the diameters of the corresponding random graphs. In contrast, if the annotated com-
munities are “long,” then we expect that they will have larger diameters than their
corresponding random graphs. We note that all of the annotated communities that
we consider are identifying nodes that share some important feature, and thus their
structure may not be representative of all true communities (for example, groups of
individuals who form a friendship group may not necessarily share any common traits).

The first row of Table I contains the results of these experiments. For each network,
we present the average roundness of the annotated communities. For some networks,
such as network HS, the diameters of the annotated communities are only slightly
larger than the diameters of the random graphs. For other networks, the difference
is far more pronounced. These results suggest that the various models of “round”
communities may not be well suited for characterizing these annotated communities.
Interestingly, for many networks, this difference becomes increasingly pronounced as
we consider larger and larger communities; for example, in network DM, the aver-
age ratio was 1.50 when considering communities of size at least 50, but 1.75 when
considering only communities of size at least 100.

2All network features in this chapter were calculated using the NetworkX software package for Python
[Hagberg et al. 2008].
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In our next experiment, we decompose each annotated community into several parts,
and examine whether each of these parts individually better fits a “round” model.
To perform these decompositions, we use the Louvain method for greedy modularity
optimization. This process gives us a large collection of node sets, each a subset of
an annotated community, and for each of these sets we perform the same comparison
procedure as before. The fifth row of Table I contains the results for this experiment. We
see that these ratios are much closer to 1 than were the ratios in the earlier experiment,
indicating that these community parts are generally much “rounder” than the larger
annotated communities.

Finally, we examine how these parts are related to one another. For every annotated
community, we define a new network N in which every node n1, n2, . . . , nk in N rep-
resents one of the parts P1, P2, . . . , Pk of that annotated community, obtained through
the Louvain method. Because we only consider connected communities, for every part
Pi, there is at least one edge between a node in Pi and a node in Pj , for some j �= i. For
each Pi, we calculate Ti, the total number of edges outgoing from nodes in Pi to nodes in
other parts. Then, for each Pj , if there are at least Ti

k edges from nodes in Pi to nodes in
Pj , we connect nodes ni and nj in N. For example, if there are a total of five parts, and
there are 100 edges outgoing from nodes in Pi to nodes in other parts, then we connect
Pi and Pj if there are at least 20 edges from nodes in Pi to nodes in Pj . Note that
every pair (Pi, Pj) is considered twice: once when we consider the total number of edges
outgoing from Pi, and once when we consider the total number of edges outgoing from
Pj . It may be, for instance, that if Pi is very small and Pj is very large, a large portion
of Pi ’s outgoing edges go to Pj , but only a small portion of Pj ’s outgoing edges go to Pi.
In this case, as long as the condition is met at least once, we connect the two nodes.
Note that it is possible that this network of parts might be disconnected. In practice, for
most of the network datasets we considered, this did not occur, and for those network
datasets where it did happen, fewer than 1% of the annotated communities produced
such a structure. When we did encounter such a situation, we were unable to calculate
roundness, and so discarded such sets from consideration.

We then repeat the same experiment for these networks of parts. The results are
contained in the sixth row of Table I. From these values, it appears that these networks
fit the “round” model very well. However, we caution that these networks are often very
small: For all datasets, the vast majority of these networks have fewer than 10 nodes
(that is, most annotated communities decomposed into fewer than 10 parts), and so
have very small diameters. These ratios would have been much more informative if
these networks were larger; nevertheless, this is a reasonably good indication that the
parts within annotated communities are well connected to one another, as opposed to
being positioned in a structure like a path graph.

We next supplement these results by calculating values of other network features in
addition to diameter, and then repeating the previous experiments. For each annotated
community, community part, or network of parts, we calculate the following features,
and compare them to the values of those features on a random graph:

—Median edge betweenness: To calculate edge betweenness, for every pair of nodes, we
identify all shortest paths between those two nodes. The edge betweenness of an edge
is defined as the fraction of all such shortest paths that that edge appears in. Each
edge has its own edge betweenness value, and for each graph (annotated community,
community part, or network of parts), we identify the median edge betweenness
value [Brandes 2001].

—Transitivity: The transitivity of a graph is defined as the fraction of all pairs of
adjacent edges (a, b), (b, c) for which nodes a and c are connected [Wasserman and
Faust 1994].

ACM Transactions on Knowledge Discovery from Data, Vol. 9, No. 3, Article 21, Publication date: April 2015.



21:10 S. Soundarajan and J. E. Hopcroft

Table II. Ratios of Median Edge Betweenness and Transitivity of Annotated Communities, Annotated Community
Parts, and Network of Parts to Median Edge Betweenness and Transitivity of Random Graphs of the Same Size

Grad Ugrad HS SC DM Amazon Manu
Edge Bet. Ann. Comm. Ratios (size ≥ 50) 0.74 0.88 0.85 0.83 0.77 0.77 0.70

Comm. Parts Ratios 0.97 0.95 0.96 0.98 0.99 0.99 1.01
Comm. Parts Network Ratios 1.02 1.02 0.98 1.00 1.03 1.00 1.00

Transitivity Ann. Comm. Ratios (size ≥ 50) 4.99 2.20 6.35 4.65 2.59 9.25 3.09
Comm. Parts Ratios 1.23 1.26 1.92 1.62 1.20 1.47 1.07

Comm. Parts Network Ratios 1.08 0.95 1.11 1.06 1.03 1.09 1.0

Table III. Roundness Statistics: Ratios of Diameters of Annotated Community Parts, Identified through Infomap
and Link Communities Algorithms, to Diameters of Random Graphs of the Same Size

Grad Ugrad HS SC DM Amazon Manu
Comm. Parts Roundness (InfoMap) 1.02 1.14 0.99 1.02 1.04 0.98 1.05
Comm. Parts Roundness (Link Communities) 1.00 1.00 0.99 1.00 1.00 0.99 1.01
Network of Comm. Parts Roundness (InfoMap) 1.02 0.98 1.00 1.02 0.89 1.00 1.00

Table II contains these ratios. Once again, we see that for every network, both the
annotated community parts and networks of parts resemble random graphs much more
closely than do the annotated communities.

The fact that parts of annotated communities closely resemble random graphs is valu-
able, but somewhat unsurprising. These parts were identified through use of greedy
modularity optimization, which is based on the “round” model of communities, and so
it is natural that the communities that it finds fit that model. The purpose of these
experiments was not to demonstrate that sets found by greedy modularity optimiza-
tion are “round.” Rather, there are two key points: first, that annotated communities
themselves are not well modeled by metrics that are based on expectations of connec-
tivity through the entire community, and second, that annotated communities can be
decomposed into smaller parts that are themselves both individually structured and
connected to one another in a way that may be correctly captured by such metrics.

Despite this, in order to demonstrate that these results are not simply an artifact
of the greedy modularity optimization partitioning algorithm that we chose to use, we
apply the InfoMap and Link Communities algorithms to each annotated community
and calculate the roundness statistics of the resulting parts. These values are presented
in Table III. We see that, as before, these community parts are much rounder than the
original annotated communities themselves. Additionally, for the community parts
identified through the InfoMap algorithm, we again calculate the roundness statistics
of the network of community parts, and obtain similar results. (We do not do this for the
Link Communities algorithm, which identifies overlapping communities rather than
a network partitioning, because our method of creating the network of parts is not
appropriate for overlapping parts).

Working from this intuition, we next present the Node Perception template for finding
overlapping communities.

5. NODE PERCEPTION ALGORITHM TEMPLATE

Using the results from the previous section, we now present our Node Perception
algorithm template for finding overlapping communities. Unlike many other popular
methods, we do not attempt to optimize one particular mathematical measure. Rather,
we describe a flexible template that is based on the intuition that communities are
made up of small groups that are linked together. Because the template is not based
on any one measure, users are able to use features of a network, as well as running
time and memory constraints, to create an algorithm appropriate for their needs. In
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Fig. 1. Creation of subcommunities: Group each node’s neighborhood into subcommunities.

Fig. 2. Algorithm overview: First, identify subcommunities around each node. Second, create a network of
subcommunities. Third, group subcommunities into communities.

this section, we give a broad overview of our template, and then discuss the various
implementations that we analyze.

5.1. Overview

Our method consists of three parts. First, for every node v in a network G, we separate
v’s neighbors into subcommunities, each containing a portion of a larger community to
which v belongs. Next, we create a new network H, such that each node in H represents
a subcommunity from the first step. Two nodes in H are connected if their associated
subcommunities in G are related in some way (e.g., share some number of elements).
Finally, we identify communities in H. To identify communities in the original network
G, we decompose each community in H into its member subcommunities, and each
subcommunity into its member nodes from G. Each node can appear in multiple sub-
communities, and thus can appear in multiple communities. Many different methods
for performing each step are possible. For a graphical illustration of this process, see
Figures 1 and 2.

In the next section, we explain each of these three steps in greater detail. Because
each step can be performed in many different ways, portions of the description are
intentionally nonspecific. We present precise details of our implementations in the
next section.

5.2. Detailed Description

5.2.1. Creation of Subcommunities. Our analysis in Section 4 demonstrated that an-
notated communities may be well described by a model that joins together small
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“subcommunities.” However, it is not immediately clear how one might construct these
subcommunities. In this article, we create these subcommunities by considering the
node neighborhoods of each individual node. Work by Gleich and Seshadhri, demon-
strating that node neighborhoods typically have low conductance scores [Gleich and
Seshadhri 2012], provides some justification for this method, but other methods are
likely possible.

The first step of this method is to identify subcommunities in network G. To do this,
we iterate over each node v in network G and group v’s neighbors into one or more
subcommunities. A node v may belong to many large communities C1, C2, . . . , each
containing v and some of v’s neighbors, as well as more distant nodes. Each subcommu-
nity S1,v, S2,v, . . . contains v and those of v’s neighbors that belong to C1, C2, . . . ; that
is, the subcommunities correspond to v’s local perception of the large communities. For
example, in a social network, separate subcommunities may represent the groups of
the individual’s friends from college, friends from a soccer team, acquaintances from
work, and so on. When we consider the subgraph immediately around a vertex v, those
of v’s neighbors that know one another from the same community are likely to be better
connected to one another than to those of v’s neighbors that v knows from a different
group (e.g., v’s friends from a soccer team likely know each other, but are less likely to
know v’s coworkers).

The method used to create this grouping should be suitable for the features of G
as well as the data available. If one believes that each of v’s neighbors is likely to
belong to only one of v’s communities, one could apply a partitioning algorithm to the
subgraph of G induced by v’s neighbors. For greater accuracy, one could include not
only v’s immediate neighbors, but also the neighbors of those neighbors. One can also
use a method for detecting overlapping communities. This method could be, for exam-
ple, the Link Communities method, Clique Percolation, or even Node Perception used
recursively. In this article, we use simple partitioning methods, which are sufficient
for good performance on many types of networks, as well as Link Communities, which
finds overlapping communities.

The same subcommunity may be created multiple times; for example, when consid-
ering subcommunities centered around node a, we may create subcommunity {a, b, c}.
Later, when considering subcommunities around node b, we may again create subcom-
munity {a, b, c}. We choose to allow multiple copies of the same subcommunity, but one
may consider only one copy.

This step was based on the intuitive notion that although each person belongs to
many communities, relationships between individuals can typically be neatly placed
into one community. However, the success of this step does not depend on this intuition.
Consider a pair of siblings A and B from some family. Their relationship may fall into
many communities, such as the family itself, a local school, a neighborhood sports team,
etc. When using a partitioning algorithm to find subcommunities centering around A,
we will place B into only one of A’s subcommunities (e.g., the one corresponding to
family). However, even in this case, other of B’s neighbors from her other communities
may place B into subcommunties representing those other communities: although A
does not primarily think of B as “a person with whom I play sports,” someone else likely
does. Thus, even when some relationships fall into many different communities, each
node might still be placed into at least one subcommunity for each of its communities.
While there are obvious theoretical counterexamples to these assumptions, our results
provide strong evidence that they are generally valid.

A unique and particularly useful feature of our approach is that supplemental data
about the network can be used to improve this initial grouping of nodes into subcom-
munities. For example, if G is the Facebook network, then in addition to using a par-
titioning method to create the subcommunities, groups of people frequently appearing
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together in Facebook photographs could be used to create additional subcommunities.
If G is a coauthorship network, then an additional subcommunity could be a group of
people who wrote a paper together. In contrast, with an algorithm centered about some
mathematical optimization, it is unclear how to use such information. If a set of people
within a community appears in pictures together, that does not modify, say, the con-
ductance of that community. Because our evaluation methods rely on metadata, we are
unable to test such data inclusion methods in this article (with the exception of a case
study in Section 9.3.4); however, while our results demonstrate that grouping based
solely on the network structure is sufficient for this method to exceed the performance
of other community detection algorithms, we fully expect supplemental data to boost
its performance further.

5.2.2. Creation of Subcommunity Network. In the second step, we create a new network H
such that every node in H represents one subcommunity from the first step. Two nodes
in H are joined by an edge if the subcommunities that they represent are related (e.g.,
if they share any nodes in G). This edge may be weighted in relation to the strength
of the relationship between the two subcommunities. One may also require that two
subcommunities share some threshold number of nodes before connecting them in H:
this will result in a sparser network H, and so will speed up the processing in the third
step.

5.2.3. Identifying Communities in the Subcommunity Network. Finally, based on the results
from Section 4 that showed that small portions of a community are typically well
connected to one another, we use an existing community detection algorithm to group
the elements of H into communities. As with the first step, a method appropriate to the
particular application should be used. If speed is important, a fast partitioning method
such as greedy modularity optimization may be appropriate, or one could even set a
minimum edge weight and then find connected components. To find a specific number
of communities, a clustering algorithm may be best. If a slower method is acceptable,
then, as in step 1, a method for finding overlapping communities can be used.

To determine the communities in G, for each community C in H, simply take the
union of all nodes from G that are contained in the subcommunities represented by the
nodes in C. Because each node v can appear in multiple subcommunities in step 1, and
thus may be represented by multiple nodes in H, v may appear in multiple communities
in G. One could require that a node v from G appear in at least k subcommunities from
C (i.e., at least k nodes from G have “voted” to place v in community C), and this results
in smaller, more tightly knit communities, with the possibility that some nodes from
G will not appear in any communities. Alternatively, the number of times a node v
appears in a subcommunity in C could be interpreted as related to the strength of v’s
membership in C.

6. SPECIFIC DETAILS OF OUR IMPLEMENTATIONS

We consider various specific implementations of the Node Perception template, and
present a few representative examples here. Naturally, not every implementation is
appropriate for every network; in particular, some of the community detection algo-
rithms that we use in our templates are computationally intensive and unsuitable for
large or especially dense networks.

Our implementations are distinguished from other similar algorithms in two im-
portant ways. First, other algorithms typically have rigid conceptions of “subcommu-
nities.” For example, in Link Communities, “subcommunities” are simply edges from
the original network, and Clique Percolation requires subcommunities to be cliques of
a fixed size. In contrast, our methods use a community detection method to find sub-
communities. This means that subcommunities may have varying sizes and degrees
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of connectivity, depending on the structure of the network in that location. Second,
other methods typically join subcommunities together by identifying connected compo-
nents. Node Perception, however, can require more than simple connectedness: Using
a community detection algorithm to group the subcommunities ensures a high degree
of connectivity between these local groups.

In each implementation described, we perform the first step of identifying subcom-
munities as follows: For every node v in network G, we consider the subgraph Kv

induced by v’s neighbors (but not v). We then apply various community detection meth-
ods to Kv to partition v’s neighbors into disjoint sets (described in greater detail in the
following). To each of these sets, we add v, and thus obtain the subcommunities.

In network H, we create one node representing each subcommunity from the first
step. If the same subcommunity is created multiple times in the first step, we allow it
to appear multiple times in network H. In order for two nodes in H to be connected,
we require that they have a minimum Jaccard similarity with each other. We chose
to require a minimum Jaccard similarity rather than a minimum number of shared
nodes because we wanted the amount of required overlap to be greater for larger
subcommunities.3 For this implementation, we require a Jaccard similarity of at least
0.2. In addition to setting this threshold, we weight each edge in H by the Jaccard
similarity of the two adjacent subcommunities.

We also attempted to use methods for finding overlapping communities, but this
resulted in a large increase in the number of subcommunities, sometimes making
network H impractically large. We also experimented with other methods of creating
network H, such as setting different similarity thresholds or by weighting edges by
similarity, but the experimental results were effectively the same, and so we do not
present them here.

Each implementation that we describe produces a set of overlapping communities.
Two communities in this set may be very similar or even identical. As a final clean-up
procedure, we remove duplicates, but allow similar sets to remain. For some networks,
the number of communities output may thus be quite large.

Modularity-Modularity (Mod-Mod): In the Mod-Mod implementation, we create the
initial subcommunities by applying Louvain greedy modularity optimization to each
Kv subgraph. Network H is formed as described previously, and we use Louvain greedy
modularity optimization to partition the nodes of network H.

Of all the implementations that we consider, Mod-Mod and IM-Mod (described next)
are based most strongly on the intuitions that we gained in Section 4. Modularity maxi-
mization algorithms attempt to find “round” communities, with connections throughout
the entire set. As we saw in Section 4, when we partition an annotated community into
smaller communities, those smaller communities tend to be “round.” Similarly, when
we analyze the connections between those smaller communities, we see that they tend
to be connected in a “round” manner. Thus, in this implementation, we use modularity
maximization both to identify subcommunities as well as to join those subcommunities.

Pseudocode for this process is presented in Algorithm 1.
Infomap-Modularity (IM-Mod): IM-Mod is identical to Mod-Mod, except we use the

Infomap partitioning algorithm to identify subcommunities. As with Mod-Mod, this
method finds “round” subcommunities, and joins them together in a “round” way.

Components-Modularity (Comps-Mod): The Comps-Mod implementation is the same
as Mod-Mod and IM-Mod, except that the subcommunities are formed by identifying
connected components of each node neighborhood Kv. Although a connected component

3The Jaccard similarity of two sets is defined as the number of elements contained in the intersection of
those sets divided by the number of elements in their union [Jaccard 1901].
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ALGORITHM 1: Mod-Mod Pseudocode
Input: A Network G with vertices V (G) and edges E(G)
Output: Communities in network G
Multiset SU BCOMMS = ∅; Set ALLCOMMS = ∅;
for every v in V (G) do

K(v) = {x : (x, v) ∈ E(G)}; L = Louvain(Kv); for every set S in L do
S = S ∪ {v}; Add S to SUBCOMMS;

end
Create network H, where |V (H)| = |SUBCOMMS|; Define mapping
f : V (H) → SUBCOMMS for every s ∈ V (H) do

for every t ∈ V (H) do
if JaccardSimilarity( f (s), f (t)) ≥ 0.2 then

Add (s, t) to E(H);
end

end
end
P = Louvain(H); for every Pi ∈ P do

C = ∅; for every s in Pi do
C = C ∪ f (s);

end
Add C to ALLCOMMS;

end
Return ALLCOMMS;

end

is not necessarily “round,” this method is likely to be faster than either of the previous
two methods. Additionally, because the Kv subgraphs are very small, it may be the case
that sophisticated methods such as greedy modularity optimization or Infomap may
produce very similar results to much simpler methods, such as this one.

Modularity-Link Communities (Mod-LC): In previous implementations, we used
greedy modularity optimization to identify communities in H. However, this method
is known to suffer from certain flaws; namely, the existence of modularity’s “resolution
limit,” which hinders its ability to find communities in very large networks [Fortunato
and Barthelemy 2006].4 Because the networks H of subcommunities may be quite
large, we also consider other community detection methods.

In the Mod-LC implementation, we again use greedy modularity optimization to
identify subcommunities, create network H as described earlier, and then use the Link
Communities method to identify communities in H.

Because Link Communities is a very memory intensive method, we were unable to
apply this implementation to one especially dense network (network DM).

Modularity-Node Perception (Mod-NP): In the Mod-NP implementation, we again
create network H using the process described earlier. We then use the Node Perception
Mod-Mod algorithm to find communities in H. Note that because network H is typically
larger than the original network G, Node Perception cannot properly be considered a
recursive algorithm, as there is no clear stopping condition. However, subject to memory
and running time constraints, one can repeatedly apply Node Perception an arbitrary
number of times. While for some smaller networks, we were able to perform many steps

4The resolution limit is an issue with modularity optimization algorithms in general, not just this particular
algorithm.
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of recursion, only one or two steps were possible for most networks. Indeed, as with
Mod-LC, we were again unable to apply this method with even one step of recursion
to one network (DM). For the other networks, the results presented were obtained by
using one step of recursion.

DEMON/Label Propagation-Subset (LP-Subs): The DEMON algorithm is a specific
instance of our Node Perception template, and was created independently by Coscia
et al. [2012]. In this algorithm, the initial identification of subcommunities is performed
using the Label Propagation algorithm described in Raghavan et al. [2007]. The algo-
rithm contains a tunable parameter that controls the identification of communities in
network H; however, in the version that is analyzed most completely in Coscia et al.
[2012] and that we consider here, the communities in H consist of those subcommu-
nities C such that there is no other subcommunity D that is a proper superset of C.
Because the Label Propagation and subset determination steps are quite fast, this
method scales very well.

7. EVALUATION OVERVIEW

In this section, we evaluate the implementations discussed in the last section, as well
as several other popular community detection methods.

Often, researchers in this area determine the quality of a community detection al-
gorithm by evaluating its output with respect to a formal mathematical conception,
such as conductance or modularity, of what a community ought to look like. This ap-
proach has advantages, but it is unclear that any particular mathematical definition
is correct. Another common approach is to use synthetic benchmark networks with
planted communities, but this method is susceptible to similar problems. Because, de-
spite years of research into social networks, there is still little consensus on what a
“real” community is, we choose to take a different approach to evaluating community
detection algorithms. Rather than assuming that a particular mathematical definition
is correct, we evaluate algorithms through use of the annotated communities described
in Section 3.

This metadata describes characteristics of each node, and can be used to identify sets
of similar nodes. In some cases, the metadata identifies sets of nodes that intuitively
seem to be good communities; for example, graduate students in a particular depart-
ment probably form a good community. In other cases, the metadata might identify sets
of nodes that are clearly poor communities, such as the set of all people whose names
begin with the letter “K.”5 This is not a problem with the approach that we take in
this article. Because our goal is to compare our algorithm’s performance against that
of other algorithms, we do not compare against an absolute standard: if a particular
annotated community is not represented in the network structure, then we can expect
that none of the algorithms will recover it, so each algorithm will be “penalized” equally
for failing to recover it.

Our evaluation approach differs from the norm, but we note that similar strategies
have been successfully used by other researchers, such as Ahn et al. (who incorporated
metadata information into their evaluation of the Link Communities algorithm) [Ahn
et al. 2010] and Backstrom et al. (who used metadata to study the evolution of com-
munities over time) [Backstrom et al. 2006]. Although other evaluation methods are
common, they are based on a priori assumptions about the structure of communities

5Because we identify annotated communities by locating connected components within the subgraph defined
by the set of nodes that share some common feature, we know that every annotated community is at least
connected, but cannot guarantee meaningful structure beyond this. However, see Abrahao et al. [2012],
which analyzes the structure of annotated communities from many of the same datasets used in this article
and indicates that the class of annotated communities does have cohesive structure.
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and networks, and so can be biased toward particular algorithms. In contrast, using
metadata to identify annotated communities allows for an equal, unbiased comparison
between many different types of algorithms.

8. METHODS AND RESULTS

For each network, we run our Node Perception templates Comps-Mod, IM-Mod, Mod-
Mod, Mod-LC, Mod-NP, and LP-Subs, as well as Infomap (IM), Louvain method for
greedy modularity optimization (Mod), Link Communities (LC), Clique Percolation
(CP), and OSLOM (OS). Our results show that the various Node Perception methods
generally outperform all other community detection methods.

OSLOM produces several output files, each corresponding to a different level in the
hierarchy of communities. For these networks, using the results for the lowest level of
the hierarchy produces the highest accuracies, and so we present those results.

Clique Percolation requires the user to specify the clique size. On these networks,
a size of k = 4 gave the best overall results, and so we present those results here.
Networks Ugrad, DM, and SC had especially dense regions, and the Clique Percolation
algorithm required an infeasibly large amount of memory and running time, so we do
not present its results for these networks (and thus, also do not present its overall
results).

The Infomap algorithm is nondeterministic, and one parameter of the algorithm
specifies the number of partition attempts. We are not aware of a method for select-
ing the optimal number of iterations. Thus, for most of the networks, we perform 10
iterations, as was done in the Infomap documentation. For networks Amazon and DM,
which are significantly larger or denser, we only performed one iteration.

For Mod-LC, we used an approximation to the Link Communities algorithm for
networks Amazon and DM. Rather than finding the threshold link weight that al-
lows network H to be split at the optimal partition density, we consider thresholds
in 0.1, 0.2, . . . , 0.9, compute the partition densities obtained by each partitioning, and
select the partitioning that obtains the greatest partition density. In experiments on
smaller networks, this method proved to give results that were largely indistinguish-
able from the original method.

All of the algorithms that we consider, including the Node Perception implementa-
tions, may at times identify very small communities. OSLOM, Infomap, and greedy
modularity optimization may return communities containing as few as one node, Link
Communities and the Node Perception methods may identify communities with only
two nodes, and Clique Percolation may return communities with only four nodes.
Rather than set different thresholds for the minimum size of a “meaningful” com-
munity, we simply consider all communities returned by each algorithm. Observe that
this decision cannot result in lower recall rates than if we had chosen to set a minimum
size threshold; however, it can and does result in lower precision rates for nearly every
algorithm.

8.1. Evaluation Methods

Our evaluation strategy relies on the use of the Jaccard similarity index to determine
when an algorithm has recovered an annotated community.

For each network N and algorithm, we compare each annotated community A in
N to the communities C found by that algorithm. For each annotated community
A, we calculate the maximum Jaccard similarity JA between A and a community C
found by the algorithm, over all communities found by the algorithm (that is, JA is
the Jaccard similarity between A and the “closest” detected community). We then take
the average of all such JA’s and report this value in Table IV. This is the “Continuous
Recall” score of the algorithm. Although other methods of comparison are certainly

ACM Transactions on Knowledge Discovery from Data, Vol. 9, No. 3, Article 21, Publication date: April 2015.



21:18 S. Soundarajan and J. E. Hopcroft

Table IV. Recovery of Annotated Communities (Continuous Recall): Average Jaccard Similarity between Each
Annotated Community and the Most Similar Detected Community

NP: NP: NP: NP: NP: NP:
Network Comps-Mod IM-Mod Mod-Mod Mod-LC Mod-NP LP-Subs LC CP OS IM Mod
Amazon 0.47 0.41 0.45 0.42 0.50 0.42 0.41 0.36 0.43 0.44 0.13
Grad 0.56 0.57 0.54 0.54 0.61 0.53 0.50 0.47 0.58 0.60 0.42
Ugrad 0.27 0.32 0.31 0.34 0.35 0.29 0.19 0.17 0.24 0.24
HS 0.19 0.20 0.19 0.19 0.21 0.19 0.17 0.11 0.14 0.12 0.03
SC 0.21 0.23 0.25 0.23 0.24 0.22 0.20 0.16 0.15 0.05
DM 0.25 0.36 0.38 0.29 0.33 0.22 0.16 0.05
Manu 0.58 0.59 0.56 0.56 0.61 0.54 0.55 0.31 0.55 0.57 0.57

Table V. Recovery of Annotated Communities (Binary Recall): Fraction of Annotated Communities for Which
There is a Detected Community with a Jaccard Similarity of at Least 1

3

NP: NP: NP: NP: NP: NP:
Network Comps-Mod IM-Mod Mod-Mod Mod-LC Mod-NP LP-Subs LC CP OS IM Mod
Amazon 0.67 0.53 0.63 0.62 0.74 0.61 0.54 0.44 0.58 0.58 0.15
Grad 0.71 0.71 0.67 0.71 0.71 0.71 0.63 0.54 0.71 0.71 0.50
Ugrad 0.34 0.39 0.39 0.39 0.41 0.37 0.22 0.24 0.22 0.22
HS 0.13 0.16 0.16 0.17 0.19 0.11 0.09 0 0.09 0.04 0
SC 0.14 0.19 0.26 0.25 0.23 0.14 0.19 0.12 0.05 0
DM 0.25 0.46 0.50 0.34 0.43 0.18 0.16 0.05
Manu 0.70 0.70 0.70 0.70 0.80 0.70 0.60 0.30 0.60 0.60 0.60

possible, we chose to use Jaccard similarity because it takes into account the size
difference between the two sets being compared. If, for example, a community detection
algorithm returns the entire network as one community, then it certainly contains every
annotated community, but it has given us no useful information.

We additionally calculate a binary version of recall, which sets a threshold for Jaccard
similarity. In this measure, we say that an algorithm “found” an annotated community
if it recovered it with a Jaccard similarity of at least 1

3 . A Jaccard similarity of 1
3

indicates that if the detected community is exactly the same size as the annotated
community, as few as half the elements from the annotated community were found,
but if more elements are found, allows a size differential of up to a factor of 3. We
experimented with other thresholds, and the algorithms each scored similarly relative
to one another. Binary recall is similar to continuous recall, but gives a better sense of
the distribution of Jaccard similarities: for example, if an algorithm has a moderately
high continuous recall score, binary recall helps us understand whether this is because
it found a few communities very well, or many communities moderately well. Table V
reports the binary recall scores for each network and algorithm.

We also compute the “Continuous Precision” and “Binary Precision” scores of the
algorithm by performing the opposite calculation: For each community C found by
the algorithm, we compute the maximum Jaccard similarity JC between C and an
annotated community A, and report the average of all such JC ’s (Table VI), or the
fraction of such JC ’s that are at least 1

3 (Table VII).
For ease of interpreting results, we have chosen to set a single threshold for calculat-

ing binary recall and precision values. Naturally, there is nothing fundamental about
the value 1

3 , and we might have chosen any other reasonable threshold instead. The
website of this article’s first author contains a longer version of this article with an
Appendix with box plots containing the distribution of recall and precision values for
communities in each network (that is, these plots contain the distribution of JA and
JC values for each network.) In this version, we summarize the results obtained at
different recall and precision thresholds.

ACM Transactions on Knowledge Discovery from Data, Vol. 9, No. 3, Article 21, Publication date: April 2015.



Use of Local Group Information to Identify Communities in Networks 21:19

Table VI. Recovery of Annotated Communities (Continuous Precision): Average Jaccard Similarity between Each
Detected Community and the Most Similar Annotated Community

NP: NP: NP: NP: NP: NP:
Network Comps-Mod IM-Mod Mod-Mod Mod-LC Mod-NP LP-Subs LC CP OS IM Mod
Amazon 0.09 0.13 0.08 0.12 0.14 0.13 0.05 0.05 0.06 0.16 0.12
Grad 0.20 0.22 0.14 0.19 0.29 0.24 0.07 0.13 0.11 0.30 0.46
Ugrad 0.20 0.15 0.12 0.20 0.33 0.21 0.04 0.11 0.60 0.81
HS 0.02 0.05 0.03 0.05 0.05 0.06 0.03 0.04 0.00 0.02 0.02
SC 0.04 0.06 0.05 0.06 0.07 0.08 0.03 0.01 0.05 0.12
DM 0.01 0.04 0.02 0.05 0.01 0.01 0.07 0.06
Manu 0.67 0.63 0.42 0.40 0.68 0.65 0.41 0.25 0.96 1.0 1.0

Table VII. Recovery of Annotated Communities (Binary Precision): Fraction of Detected Communities for Which
There Is an Annotated Community with a Jaccard Similarity of at Least 1

3

NP: NP: NP: NP: NP: NP:
Network Comps-Mod IM-Mod Mod-Mod Mod-LC Mod-NP LP-Subs LC CP OS IM Mod
Amazon 0.060 0.125 0.040 0.080 0.109 0.114 0.013 0.020 0.051 0.175 0.128
Grad 0.215 0.241 0.067 0.140 0.376 0.293 0.020 0.031 0.135 0.333 0.667
Ugrad 0.104 0.101 0.031 0.161 0.506 0.128 0.001 0.112 0.643 0.900
HS 0.001 0.004 0.001 0.003 0.006 0.006 0.000 0.000 0.001 0.005 0.000
SC 0.003 0.005 0.004 0.003 0.008 0.010 0.001 0.007 0.009 0.000
DM 0.002 0.019 0.008 0.020 0.001 0.003 0.081 0.097
Manu 1.000 0.878 0.657 0.394 0.919 0.930 0.619 0.250 1.000 1.000 1.000

We caution that recall and precision should be interpreted carefully when comparing
a partitioning algorithm to an algorithm that finds overlapping communities. A par-
titioning method, when compared to a method for finding overlapping communities,
will typically find a smaller number of strong communities, and so may have lower
recall and higher precision scores (indeed, our results show that the algorithm with
the lowest recall has the highest precision). For this reason, rather than presenting a
simpler evaluation in which precision and recall are combined into a single score (e.g.,
the F-score), we present the values separately. A user’s choice of algorithm ought to be
application dependent, and the type of application that demands a high precision may
be very different from an application that requires a high recall.

In all tables, the best performing algorithm for each network is presented in boldface.
Additionally, because we are interested in comparing methods for finding overlapping
communities, the best performing overlapping community detection method is itali-
cized in Tables VI and VII.

8.2. Results

Our results show that across seven datasets, the Node Perception algorithms generally
have significantly higher continuous recall scores than the other methods (Table IV).
On each of the networks, as measured by continuous recall, the best performing algo-
rithm was a Node Perception method. When evaluated by binary recall, we again see
that the top algorithm in every case is a Node Perception implementation (although
on network Grad, several algorithms are in the top position). When calculating the
average continuous recall over all networks, we see that IM-Mod and Mod-Mod had an
average continuous recall of 0.38, a 15% improvement over Link Communities, which
at an average continuous recall of 0.33 was the best non-Node Perception algorithm.
Comps-Mod and LP-Subs (DEMON) did not perform as well, but on average, still out-
performed every non-Node Perception algorithm. We see qualitatively similar results
when evaluating algorithms using binary recall (Table V). The output from Mod-LC
performed comparably with IM-Mod and Mod-Mod, but was much slower because the

ACM Transactions on Knowledge Discovery from Data, Vol. 9, No. 3, Article 21, Publication date: April 2015.



21:20 S. Soundarajan and J. E. Hopcroft

Link Communities method is slower than greedy modularity optimization. In contrast,
the Mod-NP implementation produced dramatically better recall scores, but could not
be applied to network DM. On five of the six networks on which we ran Mod-NP, it
outperformed every other algorithm, often by a large margin.

As expected, the two partitioning methods had the highest precision scores (Tables VI
and VII). When we examine continuous precision scores, we see that with few excep-
tions, every Node Perception implementation outperforms every other method for find-
ing overlapping communities. In particular, Mod-NP and LP-Subs perform very well.
Each of these methods had the highest continuous precision scores of the algorithms
for finding overlapping communities on three of the networks. On network HS, we see
that LP-Subs had the highest continuous precision score, even compared to algorithms
for partitioning a network. The results for binary precision are somewhat less clear,
although we again see that in nearly every case, the best performing algorithm for
finding overlapping communities was a Node Perception method. Averaged over all
seven networks (or, in the case of Mod-LC and Mod-NP, six networks), four of the six
Node Perception implementations outperform the other methods for finding overlap-
ping communities. Again, Mod-NP in particular has very high continuous precision
scores.6

As noted before, one can easily make an algorithm with very high recall and very low
precision (or vice versa). Thus, it is critical to note here that Node Perception achieves
its high recall scores while, in most cases, matching or exceeding the precision scores
of other algorithms to find overlapping communities.

Although Mod-NP appears to be the best implementation of Node Perception (subject
to efficiency constraints), the much simpler implementations often perform nearly as
well. Consider the binary recall for network Ugrad: All six Node Perception implemen-
tations score between 0.34 and 0.41, while the next best algorithm scores a 0.24. We
see similar behavior on network HS.

When considering different thresholds for binary recall and precision, we see sim-
ilar results. Notably, the Mod-NP implementation again performs very well on most
datasets. Full details of these results are available in a longer version of this article on
the first author’s website.

As mentioned earlier, when analyzing algorithm output we chose not to set a thresh-
old for minimum community size. When we experimented with different thresholds,
we observed virtually identical results for recall: even with such thresholds, the Node
Perception implementations outperformed all of the other algorithms. In the precision
results presented, we saw that Node Perception performed roughly equally to the other
methods for finding overlapping communities. When we calculated precision using only
communities larger than the threshold, we saw similar results on average, but with
more variance over different networks and implementations.

8.3. Discussion

The main implication of these results is that the general principle of joining together
small subcommunities of varying size and structure is of far more importance than
the specific implementation used. These results confirm the analysis in Section 4,
which showed that annotated communities are formed of well-connected sets that are

6The results presented were obtained by setting no minimum size threshold for detected communities.
When we experimented with different minimum size thresholds and calculated recall and precision scores,
the algorithms were ranked in roughly the same order as with no threshold, with the exception of the OSLOM
algorithm, which is intended to find overlapping communities. Interestingly, when we set a size threshold
and calculated precision scores, we observed that OSLOM behaved like a partitioning algorithm: it had
excellent precision scores, but almost every node appeared in only one community. In contrast, with the
other algorithms for finding overlapping communities, almost every node appears in multiple communities.
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well connected to one another. While the resource-intensive Mod-NP method gives
dramatically better results than any other method that we analyzed here, even simple,
fast methods such as Comps-Mod are generally much better than any of the other
methods for finding communities. Thus, rather than considering various instances of
this template in isolation, we ought to credit the success of these methods to the general
principles of the Node Perception template. This view allows a practitioner to modify
the template in order to suit his or her needs and the features of the network under
consideration.

9. SCALABILITY AND SUITABILITY

Next, we discuss ways to modify the Node Perception algorithm to make it suitable for
different types of networks.

9.1. Running Time

With the exception of network DM (discussed later), the Node Perception implemen-
tations finished quickly on all networks using a desktop computer. On Amazon, our
largest dataset, Mod-Mod, took approximately 15min, and other networks took be-
tween a few seconds and a few minutes. Mod-Mod’s running time was comparable to
other methods for finding overlapping communities. Mod-LC and Mod-NP generally
took only slightly longer (again, except for DM).

The slowest step in our algorithm is locating communities in the network H of
subcommunities. In general, the number of nodes in H will be m |V (G)|, where m is
the average number of communities that each vertex belongs to. The number of edges
in network H is more difficult to analyze, and, as with Clique Percolation, depends
on the structure of dense regions of G. Network DM possesses areas with a large
amount of subcommunity overlap, and thus was very slow for Clique Percolation, Node
Perception, and Link Communities: on a cluster node with 16GB of memory, Mod-Mod
took approximately 12h to terminate and Link Communities took approximately one
day. Clique Percolation, Mod-LC, and Mod-NP would have taken much longer (weeks
or months) if we had allowed them to terminate.

Although Mod-LC and Mod-NP were inappropriate for network DM, this should not
be interpreted as a flaw of Node Perception itself: Due to its template nature, one
can produce both efficient and inefficient implementations. In cases such as network
DM, when network H is very dense, H’s size can be reduced by filtering out smaller
subcommunities, requiring a greater amount of overlap between subcommunities, or
using a simple clustering scheme to identify communities in H, rather than a slower,
more resource intensive method such as Link Communities.

9.2. Network Suitability

The Node Perception algorithm as we have presented it is highly dependent on network
transitivity. To create the subcommunities, we consider the neighbors of a node and
their connections to one another. Creating subcommunities thus relies heavily on these
neighbors being connected to other neighbors in the same large community. Generally,
many networks do possess high transitivity, which is one reason why our approach was
successful.

However, there may be networks with low transitivity that still possess community
structure. For instance, instead of three-cycles (transitivity) the network may instead
have many four-cycles. In such a case, we might modify the method used to identify
the subcommunities. For example, if the network has many four-cycles, then we might
consider not just the neighbors of a node, but also those neighbors’ neighbors.

We emphasize that such modifications are generally unnecessary, and the unmodified
version of the algorithm worked well on all datasets evaluated. Moreover, one can
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ascertain the need for modification by examining the network structure by sampling
random nodes and progressively widening the diameter of their “local” neighborhoods
until connections between nodes in the neighborhoods are found. One might even select
different diameters for different nodes, depending on the graph structure around those
nodes.

9.3. Implementation Selection and Case Studies

Our results have shown that many implementations of Node Perception will outperform
other algorithms. In this section, we provide guidance and examples for users wishing
to choose between various implementations.

First, observe that the simple Mod-Mod implementation works efficiently and accu-
rately for all networks examined. It gives higher overall continuous and binary recall
scores than all non-Node Perception algorithms that we considered, and gives a higher
continuous precision score than the other algorithms for finding overlapping communi-
ties (although Link Communities has a slightly higher binary precision score). Because
the Louvain method for greedy modularity optimization is more memory efficient than
many other methods, the Mod-Mod implementation runs easily for even large net-
works. However, Mod-NP tended to give higher binary and continuous recall scores
than Mod-Mod, so it may be a better choice if the network is sufficiently small.

A user can also customize an implementation to the network being considered. To
guide a practitioner in selecting an appropriate implementation of Node Perception,
we provide the following case studies.

9.3.1. Network Grad. Network Grad possesses some important features: it is small,
with only 503 nodes and 3256 edges, and as a Facebook network, is an incomplete
representation of the true underlying social network. Due in part to its small size, the
average degree of each node is less than 13, and so, when finding subcommunities,
most subgraphs that we consider are quite small. Even if we consider the subgraphs
obtained by going two steps out from each node, we still have a low average size of
76 nodes (in contrast, for network DM, each such subgraph would have an average
size of approximately 1000 nodes). Thus, even if we consider these larger subgraphs,
the Mod-Mod implementation is still likely to be fast. Moreover, because we know
that the data is an incomplete representation of the complete network, considering
these larger subgraphs will likely give us more accurate subcommunities, because the
modularity algorithm can take advantage of information about nodes that were not
included in the smaller subgraph. Indeed, applying this method to network Grad gives
us a continuous recall score of 0.65 (as compared with 0.54 in the original Mod-Mod
implementation), a binary recall score of 0.79 (instead of 0.67), a continuous precision
score of 0.25 (instead of 0.14), and a binary precision score of 0.272 (compared with
0.066). We see that considering these larger subgraphs gives a startling increase in
accuracy. Note, however, that going out too far from each central node will defeat the
point of the algorithm, as the subcommunities are supposed to represent each node’s
perception of the network around it. The success of this method thus depended on two
important features of the network: its small size (which allowed for this method to be
reasonably fast) and its known incompleteness.

If one had a network with both sparse and dense sections, one could use a modification
of this implementation by using the smaller subgraphs (i.e., those obtained by going
one step out from the central node) in dense regions, but using the larger subgraphs in
sparse regions.

9.3.2. Network Grad. In this case study, we again consider network Grad, but turn to a
different problem. Suppose one wishes to create committees from a group of people; for
example, one committee of grad students might be responsible for welcoming incoming
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students, and another committee might be responsible for organizing talks. The person
in charge of creating these committees has a fixed number of committees in mind,
and wants to find groups that are overlapping in order to facilitate the flow of ideas
between different committees. Although the data that we consider is for graduate
students, one can easily perform the same analysis on a network of faculty members
or of employees in some business. Suppose that the organizer wishes to identify 50
overlapping communities.

To accomplish this task, we can use the clustering algorithm METIS, which finds
a specified number of clusters, to produce the Mod-METIS implementation [Karypis
and Kumar 1998]. Unlike the other implementations that we consider in this article,
this implementation allows us to find a specified number of overlapping communities.
When we apply this algorithm to network Grad to find 50 communities, we achieve a
continuous recall of 0.42, a binary recall of 0.71, a continuous precision of 0.35, and a
binary precision of 0.54. Mod-METIS’s continuous recall is lower than that of the other
Node Perception implementations, though its binary recall is the same. Interestingly,
it has much higher precision scores. We believe that this is because, as with the greedy
modularity optimization and Infomap community detection algorithm, this implemen-
tation finds a fairly small number of communities. Unlike those algorithms, however,
this implementation finds overlapping communities and allows the user to specify the
number of communities.

9.3.3. Network SC. We now attempt to improve Node Perception’s running time on
network SC, while still obtaining good results. Although all of the Node Perception
implementations that we considered previously were reasonably fast for network SC,
we consider the following modifications as an example for how one might implement
Node Perception for a network that is much larger.

As with many networks, SC has a degree distribution in which most nodes have
a very low degree, but some nodes have a much higher degree [Clauset et al. 2009].
The creation of subcommunities is thus usually fast, but sometimes slow. We demon-
strated earlier that if we created subcommunities even through a method as simple
as finding connected components, Node Perception produced reasonably strong results.
Thus, to improve running time, we use greedy modularity optimization to partition
the neighborhoods of low degree nodes, and use the faster method of finding connected
components to partition the neighborhoods of high degree nodes (in this case, we define
“high degree” to be those nodes that are in the top 1% of nodes, as ranked by degree).
We then again join the subcommunities using greedy modularity optimization. This
process produces results that are nearly as good as the original Mod-Mod algorithm,
as measured by all four accuracy metrics (in all cases, the decrease in accuracy is
measurable only in the third significant digit or later). The running time, however, is
much improved, and as expected, lies between the running times for Mod-Mod and
Comps-Mod.

9.3.4. Network HS. Network HS is a genetic interaction network, and in such networks,
the functions of each gene, which we used to identify communities, are typically de-
termined experimentally by biologists on a per-gene basis. Identifying these features
can often be very time and resource intensive, and so it is highly likely that a practi-
tioner will have incomplete community membership information [Stumpf et al. 2008;
Amaral 2008]. In this example, we demonstrate how one can use existing community
membership information to boost the performance of Node Perception.

We use the standard Mod-Mod implementation; however, in addition to using the
subcommunities generated by greedy modularity optimization, for each node n and
every community C (genetic function) that n is known to belong to, we create an
additional subcommunity containing n and all of its neighbors from C. If n is known to
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play multiple genetic functions, then there may be multiple such subcommunities, and
we add all of them to the list of subcommunities.

To evaluate this method, we use some of the annotated community data. For each
node n in HS, we are given a set of known genetic functions that n plays. We had orig-
inally used these functions to identify the annotated communities; now, we randomly
select half of these genetic functions, and use this information to produce the additional
subcommunities. This boosts the continuous recall of the Mod-Mod implementation
from 0.19 to 0.25, the binary recall from 0.16 to 0.30, the continuous precision from
0.028 to 0.032, and the binary precision from 0.001 to 0.002. When applying this same
methodology to network SC, which is also a genetic network, we see similar improve-
ments in accuracy, with continuous recall increasing from 0.25 to 0.30, binary recall
from 0.26 to 0.38, continuous precision from 0.048 to 0.051, and binary precision from
0.004 to 0.006.

Naturally, this implementation does not allow for a fair comparison to other algo-
rithms, because we are taking advantage of information not given to the other methods.
However, the purpose of this case study is to illustrate the flexibility of the Node Percep-
tion template, and show how information, both internal and external to the network,
can be used to increase its performance.

Any community detection methods can be used in the Node Perception template, and
it is thus impossible to exactly characterize which methods are most appropriate for
particular networks. We emphasize that basic, fast implementations are likely to work
very well for most networks, but the template nature of Node Perception can also give
users flexibility when desired.

10. CONCLUSION AND FUTURE WORK

Mathematical formulations of community structure have traditionally fallen into one of
two categories: those that are based on the belief that communities are “round” and well
connected throughout (such as a G(n, p) graph), and those that are based on the belief
that communities consist of small, tightly connected groups that are well connected to
one another, although individual nodes themselves need not be well connected to the
rest of the community.

To carefully examine these general beliefs, we collected a set of seven network
datasets of different scales and from different domains. Each of these networks contains
some sort of external annotation that allowed us to identify “annotated communities.”
For example, in the product copurchasing network Amazon, products were annotated
with various categories (such as books by some author), and we grouped together all
items from the same category into one community. For each of these annotated com-
munities, we next produced a random graph of the same size, and calculated the ratio
of the diameter of the annotated community to the diameter of the random graph.
For every network, the annotated communities tended to have larger (in some cases,
much larger) diameters, indicating that the “round” model of community may not be
appropriate for these communities. We next used greedy modularity optimization to
decompose each annotated community into several parts, and showed that these parts
tended to be “rounder,” with diameters closer to those of the random graphs. Finally,
we examined how these parts are connected to one another, and showed that the graph
representing these connections also fit the “round” model well. These results held even
when we studied these graphs with features other than diameter, and suggest that
communities are indeed made up of small, well-connected groups.

Using this intuition, we developed the Node Perception algorithm template for find-
ing overlapping communities in networks. In this template, we first identify subcom-
munities corresponding to each node’s perception of the network around it. To perform
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this step, we consider each node individually, and partition that node’s neighbors into
communities using some existing community detection method. Next, we create a new
network in which every node corresponds to a subcommunity, and two nodes are linked
if their associated subcommunities overlap by at least some threshold amount. Fi-
nally, we identify communities in this new network, and for every such community,
merge together the associated subcommunities to identify communities in the original
network.

We applied several different implementations of this method to each of our seven net-
works, and showed that typically, all Node Perception implementations outperformed
other considered community detection algorithms. It is particularly noteworthy that
these results seemed to be independent of the specific implementation; these results
strongly suggest that the template itself, rather than a specific implementation, is re-
sponsible for this success. This conclusion is novel and valuable for two reasons: first,
it allows a practitioner a great deal of flexibility in selecting an appropriate imple-
mentation, allowing him or her to take advantage of network features both internal
and external; and second, our analysis into the structure of annotated communities,
which was validated by the success of the Node Perception template, gives researchers
insight into the fundamental nature of communities, justifying the general model of
communities as collections of small, well-connected groups.

For future work, we are primarily interested in identifying formal methods for tai-
loring the Node Perception template to specific networks. In our case studies, we con-
sidered modifications based on both external knowledge about the network (such as
its completeness or known community information) and knowledge gained from the
structure of the network itself (degree distribution). To some extent, such modifica-
tions are necessarily ad hoc, as the range of possible external knowledge is far too
wide to be captured with a finite set of rules. However, we may be able to formalize
some modifications that are based on structural features of the network. Features con-
sidered may include transitivity, clustering coefficient [Saramäki et al. 2007], degree
distribution, assortativity [Newman 2002], and so on. Although even simple imple-
mentations of Node Perception were quite successful, such modifications may further
improve performance.

Additionally, we are interested in identifying successful community detection meth-
ods that are based on the same general principle of joining together small groups of
nodes, but which do not necessarily identify these groups by examining node neighbor-
hoods. When we analyzed the structure of communities, we decomposed each annotated
community into several small groups by using greedy modularity optimization. How
might an algorithm identify these groups, which while small, may not correspond ex-
actly to a “subcommunity’ as we have described in this article? We are also interested
in identifying other methods for joining together the small node sets. It is possible that
for other datasets, these node sets are not joined together in a “round” way, and so
different methods for connecting them may be useful.
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cliques and overlapping modules in biological networks. Bioinformatics 22, 8 (2006), 1021–1023.

Yong-Yeol Ahn, James P. Bagrow, and Sune Lehmann. 2010. Link communities reveal multiscale complexity
in networks. Nature 466 (2010), 761–764.

Luis A. Amaral. 2008. A truer measure of our ignorance. Proc. Natl. Acad. Sci. 105, 19 (2008), 6795–6796.

ACM Transactions on Knowledge Discovery from Data, Vol. 9, No. 3, Article 21, Publication date: April 2015.



21:26 S. Soundarajan and J. E. Hopcroft

Lars Backstrom, Dan Huttenlocher, Jon Kleinberg, and Xiangyang Lan. 2006. Group formation in large social
networks: Membership, growth, and evolution. In Proceedings of the 12th ACM SIGKDD Conference on
Knowledge Discovery and Data Mining. ACM, 44–54.

Vincent D. Blondel, Jean-Loup Guillaume, Renaud Lambiotte, and Etienne Lefebvre. 2008. Fast unfolding
of communities in large networks. J. Stat. Mech. 2008 (2008), P10008.

Ulrik Brandes. 2001. A faster algorithm for betweenness centrality. J. Math. Soc. 25, 2 (2001), 163–177.
Aaron Clauset, Cosma Shalizi, and Mark Newman. 2009. Power-law distributions in empirical data. SIAM

Rev. 51, 4 (2009), 661–703.
Michele Coscia, Giulio Rossetti, Fosca Gianotti, and Dino Pedreschi. 2012. DEMON: A local-first discovery

method for overlapping communities. Proceedings of the 18th ACM SIGKDD Conference on Knowledge
Discovery and Data Mining (2012). ACM, 615–623.

Robert L. Cross, Andrew Parker, and Rob Cross. 2004. The Hidden Power of Social Networks: Understanding
How Work Really Gets Done in Organizations. Harvard Business School Press.
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